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Problem 1: Cover the 7× 7 board with dominos so that one square is left uncovered.
Which squares are possible as “last uncovered square”?

Problem 2: Here is a more interesting board. Can you cover it with dominos?
If no, why not?
Can you offer a “book proof”?
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Problem 1: Cover the 7 x 7 board with dominos so that one 
square is left uncovered. Which squares are possible as “last 
uncovered square”?

Problem 2: Here is a more interesting board. Can you cover 
it with dominos? If no, why not?
Can you offer a “book proof”?

Problem 3: In which of the following is there a perfect “marriage arrangement” between the white squares and the black 
squares?
If there is one, is there a systematic method for finding one?
If there is none, can you give a short proof?

Proofs from THE BOOK: Putting the Pieces Together
Problems

Günter M. Ziegler, Berlin
ziegler@math.fu-berlin.de

Problem 3:
In which of the following is there a perfect “marriage arrangement” between the white squares
and the black squares?

If there is one, is there a systematic method for finding one?

If there is none, can you give a short proof?
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Problem 3:
In which of the following is there a perfect “marriage arrangement” between the white squares
and the black squares?

If there is one, is there a systematic method for finding one?

If there is none, can you give a short proof?
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Problem 4: Which of the following boards T6, T7, T8, and T9 can you cover with triads T2?

If it can be done, produce a solution!

If it can’t be done,

• is there “book proof”?

• what is the smallest number of hexagons that will stay uncovered?

• is there a “± solution” where negative triads are allowed?

T6: T7:

T8:

T9:
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Problem 4: Which of the following boards T6, T7, T8, and T9 
can you cover with triads T2?

If it can be done, produce a solution!

If it can’t be done,

•	 is there a “book proof”?

•	 what is the smallest number of hexagons that will stay 
uncovered?

•	 is there a “± solution” where negative triads are 
allowed?

Problem 5: Can you put the 12 different pentominos together to form a 3× 20 rectangle?

(The 12 Pentominos are listed on a separate sheet. You are allowed to rotate them or turn
them over, if that helps!)

Can you find two different solutions?

Problem 6: Can you put the 12 different pentominos together to form two separate 5 × 6
rectangles?
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Problem 6: Can you put the 12 different pentominos together to form two separate 5 x 6 rectangles?
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Proofs from THE BOOK: Putting the Pieces Together
Solutions

Solution Problem 1: Use the black/white chessboard 
coloring. Any non-white square can be the “last uncovered 
square” in the coloring.
Using symmetry, there are still 6 cases to check - see the 
black squares in the figure.

Solution Problem 2: There is no solution.
Quick proof (from the “marriage theorem”): The 8 black 
squares marked by points have only 7 white neighbors.

Solution Problem 1:

Use the black/white chessboard coloring. Any black square can be the last one in the coloring.

Using symmetry, there are still 6 cases to check – see the darker squares in the figure:

Solution Problem 2:

There is no solution.

Quick proof (from the “marriage theorem”): The 8 black squares marked by points have only
7 white neighbors:
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Solution Problem 1:

Use the black/white chessboard coloring. Any black square can be the last one in the coloring.

Using symmetry, there are still 6 cases to check – see the darker squares in the figure:

Solution Problem 2:

There is no solution.

Quick proof (from the “marriage theorem”): The 8 black squares marked by points have only
7 white neighbors:
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Solution Problem 3: 
In the first situation there is no perfect “marriage arrangement” between the white squares and the black squares: the four 
thicker-edged white squares only have three different partners (marked by larger dark squares).

In the second situation a solution exists. It can be found by systematically exploring “augmenting chains” - that’s a large research 
topic in graph theory and in “combinatorial optimization”.

Solution Problem 3:

In the first situation there is no perfect “marriage arrangement” between the white squares
and the black squares: the four squares marked red have only three different partners (marked
blue):

In the second situation a solution exists. It can be found by systematically exploring “augment-
ing chains” — that’s a large research topic in graph theory and in “combinatorial optimization”.
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Solution Problem 4:

For T6, there is no solution; at least three hexagons are left uncovered.

But there is a solution where each hexagon is covered once, except the three hexagons in the
middle are covered exactly 3 times. Thus there is a “signed” solution.

For T7, there is no solution, as the number of hexagons is not divisible by 3. But there is a
nice solution where only the center hexagon is not covered.

For T8, again there is no solution, but a signed solution, as for T6.

For T9, there is a solution!

Solution Problem 5:

Solution Problem 6:
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Solution Problem 4: 
For T6, there is no solution; at least three hexagons are left uncovered.
	 But there is a solution where each hexagon is covered once, except the three hexagons in the middle are covered 		
	 exactly three times. Thus there is a “signed” solution.

For T7, there is no solution, as the number of hexagons is not divisible by 3. But there is a nice solution where only the center 
hexagon is not covered.

For T8, again there is no solution, but a signed solution, as for T6.

For T9, there is a solution!

Solution Problem 5: 

Solution Problem 6: 

 



12 Pentominos
Cut along the outside edges of each of the shapes below to create your own set of pentominos.


