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1 Introduction and Handout

The handout that follows is a sequence of puzzles in which students fold paper in increasingly
complex ways so that they can cut exactly one arc to create a pattern of heart-shaped holes in
their paper.

Many of us learn in early elementary school how to fold a piece of paper in half, cut along an
arc, and produce a Valentine’s Day heart. You can probably imagine how to use some extra
folds to cut out a whole grid of hearts – but what if we break the symmetry by leaving one
heart out of the grid? Can you make silly “mistakes” on purpose?

“Cutting out Hearts” works well for students from kindergarten through eighth grade, as well
as puzzle-loving adults. Because this activity is a puzzle sequence, it differentiates easily;
different grades and students start with different puzzles, and work faster or slower without
compromising the lesson.

Symmetry is the key mathematical concept illustrated in “Cutting out Hearts.” Along the
way, students learn to exploit symmetry in designing their solutions, and they see how much
complexity is required to solve puzzles with broken symmetry. Additionally, they realize how a
simple activity like cutting out a Valentine’s heart can yield an increasingly complex and devious
puzzle sequence, and they practice reverse engineering, flexible thinking, and persistence.

The handout has 10 pages, not all of which are meant to be used simultaneously:

• Page i, Instructions
• Page ii, Puzzles A-F
• Page iii, Puzzles G-L
• Page iv, Puzzles M-R
• Page v, Puzzles S-X
• Page vi, Puzzles Y-Z
• Page vii, Make your own puzzles (big kids)
• Page viii, Make your own puzzles (big kids)
• Page ix, Make your own puzzles (little kids)
• Page x, Blank puzzles page (for teachers to add puzzles)
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Cutting Out Hearts

Starting with old scratch paper or standard printer paper, create each of the
following designs by making as many folds as you like and cutting exactly one
half-heart-shaped arc, like this:

Check off the puzzles as you solve them. They get increasingly fun and difficult!

i



A B

C D

E F

ii



G H

I J

K L

iii



M N

O P

Q R

iv



S T

U V

W X

v



Y Z

vi



Try making your own puzzles!

Make some that you think would be fun but not super difficult:

Now make some that you think are hard but not impossible:
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Finally, try to make some that are impossible! (Don’t make them super-
complicated though. It’s more fun if they only have a few hearts, but still
turn out to be impossible.)

Now try a friend’s puzzles!
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Make your own puzzles!

Now try a friend’s puzzles!

ix



x



2 Implementation

2.1 Before Class

2.1.1 Understanding the Activity

Solve some of the puzzles yourself! It’s okay if you don’t do very many of them. Here’s a quick
breakdown of puzzle difficulty:

• Many adults can solve puzzles A through F in their heads.
• Puzzles G through L are fairly straightforward, but it can help to actually do them with

paper and scissors to understand what you’re working with.
• Puzzles M though P get more difficult, but are generally accessible.
• Puzzles Q through T require significant work to understand how to “move paper out of

the way.”
• Puzzles U through W are quite difficult.
• As of September 2023, puzzle X is unsolved!1

• Puzzles Y and Z are unsolved, and may be of use in investigating the conjecture in Section
5.3 or finding a stronger result. They aren’t recommended for classroom use.

The teacher not knowing how to solve all the puzzles is a fabulous motivator for students, and
is strongly recommended.

2.1.2 Budgeting Time: How long should the activity take?

Of course this depends on your schedule and student routines, but here are some suggestions:

• Kindergarten: 30-45 minutes
• Grades 1-2: 45 minutes
• Grades 3-5: 45-60 minutes
• Grades 6-8: 60-75 minutes

If you want to implement any of the extension activities in Section 3, you may want to plan for
additional time.

1As shown in Section 5.3.1, all puzzles of this type are solvable if we are allowed to shrink the hearts to
an arbitrarily small size. However we do not know of solutions for X, Y, and Z that preserve heart size. In
addition, we do not know if solutions that only use simple folds (straight folds through the entire paper, rather
than twist folds like those in Figure 11) exist, even if we are allowed to shrink the hearts.
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2.1.3 Materials

Prep your supplies:

• Paper: about 25 sheets of scrap paper or printer paper for each student. This can be
old scrap paper with writing on both sides!

• Scissors: one pair per student.
• Pencils and Markers: one each per student. (Just have these available. They may be

useful for some students midway through the activity.)
• Puzzle Copies: one set per student. (Grade-level differentiation suggestions below).
• Recycling Bin: students go through a lot of paper!

2.1.4 Differentiation by Grade

These puzzles can stretch all the way from kindergarten through 8th grade. The last few puzzles
can be challenging even for adults! Here are some suggestions about the range of puzzles to
use by grade, though of course some students will be better off starting with easier puzzles or
skipping some puzzles.

Grade Copy Suggested Approach

K
• Puzzle Page ii (puzzles A-F)
• Puzzle Page iii (puzzles G-L)
• Puzzle Page ix (make your

own puzzles, no additional di-
rections)

• Give everyone puzzles A-F to start
• Give them puzzles G-L when/if they’ve

completed puzzles A-F (or if they just
want them). (Many students will not
need puzzles G-L.)

• Give the make-your-own puzzles page
to students who seem fidgety, or to ev-
eryone if you prefer – it just depends
what you want to emphasize.

1, 2
• Puzzle Page ii (puzzles A-F)
• Puzzle Page iii (puzzles G-L)
• Puzzle Page iv (puzzles M-R)
• Puzzle Page ix (make your

own puzzles, no additional di-
rections)

• Give everyone puzzles A-L to start
• Keep puzzles M-R in reserve in case

anyone finishes A-L, or just wants
something different to work on. (Most
students will not get past puzzle L.)

• Give the make-your-own puzzles page
to students who seem fidgety, or to ev-
eryone if you prefer – it just depends
what you want to emphasize.
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Grade Copy Suggested Approach

3, 4

• Puzzle Page ii (puzzles A-F)
• Puzzle Page iii (puzzles G-L)
• Puzzle Page iv (puzzles M-R)
• Puzzle Page v (puzzles S-X)
• Puzzle Pages vii and viii

(make your own puzzles,
fun/tough/impossible)

• Give everyone pages ii and iii to start,
and suggest that they do puzzles B, D,
E, and F as a warmup, and continue on
from G.

• Give pages iv and v to anyone who fin-
ishes puzzles A-L (or mostly finishes
them, and wants to see the remaining
puzzles). Explain that these pages are
much trickier.

• Use the make-your-own puzzles pages
at your discretion – either give them
individually to any students who seem
like they would benefit, or turn them
into a class puzzle-making activity.

5, 6,
7, 8

• Puzzle Page i (instructions)
• Puzzle Page ii (puzzles A-F)
• Puzzle Page iii (puzzles G-L)
• Puzzle Page iv (puzzles M-R)
• Puzzle Page v (puzzles S-X)
• Puzzle Pages vii and viii

(make your own puzzles,
fun/tough/impossible)

• Hand out packets.
• Explain that the first two pages are

fairly straightforward, but they should
do puzzles G, H, and J as a warmup.

• If they want, they can do earlier puzzles
as well, but this isn’t required.

• When a student feels warmed up, they
should move on to puzzle K and go
from there.

• Students will find the make-your-own-
puzzle pages on their own, and may
choose to engage with them. Most stu-
dents tend to stick with the puzzles for
at least an hour.

• If you wish, run a make-your-own-
puzzle extension activity.
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2.2 During Class

2.2.1 Introducing the Puzzles

For kindergarteners through second graders, teach them to make hearts from folded
paper if they don’t already know how! Then explain that it’s their turn to make hearts in more
complicated designs. Hand out the puzzle sheets and supplies, and explain that they should
generally solve the puzzles in order – though if they get stuck, it’s okay to ask for help or try
a different puzzle.

Emphasize that students can make as many folds as they like, but they may only cut
one half-heart! Younger students tend to miss this if it’s not reiterated.

For older kids, start by reminding them how they probably learned to cut hearts from folded
paper in early elementary school. Explain that this simple activity can become deviously
challenging for more complex heart designs. Then hand out supplies and suggested puzzles
(see grade-level differentiation suggestions below). Again, reiterate, “you can make as many
folds as you want, but only cut one half-heart!”

Explain that the puzzles become progressively harder. If there are puzzles you don’t know how
to solve, tell the students, and express confidence that some of them may figure those puzzles
out and show you!

Almost silent introduction: Alternatively, you can introduce the activity just with demon-
stration. Hold up a sheet of paper, fold it in half, and cut out a single heart. As you cut,
students will realize what you’re making and comment on it. Then hold up a second sheet of
paper, fold it, and cut from the wrong side to make a broken heart (like Puzzle B). Students
will realize the mistake as you cut and whisper, smile, or comment. Hold up a third paper
sheet, make two or three random folds, and cut a half-heart arc along a fold edge. Unfold it
to show the students your silly design. Then hand out puzzles and supplies, and proceed as
above.

Optional experimentation phase: Students may find it fun and helpful to engage in free
play before moving on to the puzzles, by folding their paper any way they like, and cutting
one half-heart. This approach gives students a sense of many possible approaches quickly, and
reinforces the value of open-ended play in mathematical thought. It does require the teacher to
refocus the class on puzzles after free play, so skip it if you want to avoid the transition time.

2.2.2 During the Activity.

Sometimes students get stuck! In many of these cases, it can help to grab a pencil and ask
them to draw the lines of symmetry for each heart on the puzzle paper; sometimes it also helps
to ask them to draw the additional fold lines they think they’ll need.

18



Occasionally a younger student doesn’t want to stick with solving prescribed puzzles, and this
can be a good time to use the “make your own puzzle” pages.

Once older students begin working on the trickier puzzles, they often draw hearts on their
paper so that they can keep track of heart positions as they try complex folds. (This works
especially well when they use marker that bleeds through the paper, so that they can see the
hearts from both sides.) This is a fabulous approach, but it may be better not to suggest it
initially. The spatial skills required to start with blank paper are worth honing, and this can
be a good opportunity to let students realize that they’ve independently found a valuable way
to improve their problem solving.

Collaboration is at the teacher’s discretion. The author encourages it through table seating, and
by giving enthusiastic consent if students ask about working together. However each teacher
knows their students and what works for them in their environment.

2.3 Discussion and Takeaways

The most important part of the lesson is in the cutting and thinking and peer discussion.
However, it is worthwhile to make sure that a student articulates for the class the basic point
that fold lines create reflections.

Teachers may wish to stop the students for a few short discussions, which could include:

• What strategies have you used? (This is a good time to have students hold up puzzle
sheets where they’ve drawn fold lines, or scrap paper where they’ve drawn the hearts.)

• Can you tell just by looking at a puzzle how many fold lines you will need?
• What makes a puzzle hard? (Or, in case of blank looks, “What makes a puzzle easy?”)
• (Older kids only) Do you think there are any impossible puzzles? What would make a

puzzle impossible?
• Closer: Remember, we started with a simple kindergarten activity, and eventually found

questions we couldn’t answer.

In addition, the lesson can lead into a number of extension exercises which are detailed in the
following section.

Finally we would be remiss not to mention that this is an excellent time to watch Vi Hart’s video
on Snowflakes, Starflakes, and Swirlflakes. Older students should be challenged to understand
Vi Hart’s internet argument one minute into her Hexaflexaflakes video.
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3 Extension Exercises

3.1 Extension: Make Your Own Puzzles

“Cutting out Hearts” naturally extends into a make-your-own-puzzle exercise, which can be
used in two ways:

• at the individual level, to refocus students or give them a different kind of challenge.
• class-wide, to help students think through the characteristics of easier or harder puzzles.

This can lead to a discussion of which puzzles are in fact impossible.

3.1.1 Younger Students

For younger students (K-2), the simpler make-your-own-puzzle sheet on page ix suffices. En-
courage them to draw their own puzzles of any kind.

Ask each student to pick one of their own puzzles that they think they can solve, and draw
it in dark marker on a full sheet of paper. Post all these puzzles on a wall or board, and ask
students to solve them.

3.1.2 Older Students

Older students can think through the aspects of a good puzzle. They recognize that symmetry
makes a puzzle easier, and too much broken symmetry (or too many hearts) can make a puzzle
no fun. They can benefit from the guidance in the make-your-own-puzzle sheets on pages vii
and viii. These pages suggest students think about the three categories of puzzles in Figure 1.

Once students have made their own puzzles, and possibly tried out their friends’ puzzles, have
them choose one puzzle to share with the class. Post these on a board or wall, divided into
sections labeled “Fun,” “Tough But Probably Possible,” and “Probably Impossible.” (See Figure
2.)

This is a good time for a discussion about what the students think makes a puzzle impossible,
as well as the observation that it’s remarkable that they started with a kindergarten craft
exercise and ended up considering questions of possibility or impossibility. For more discussion
on impossible puzzles, see Section 5.

If preferred, students’ puzzles can be transferred to copies of handout page x for a class-
personalized puzzle list.

20



Puzzle Type This should be a puzzle that:

Make Your Own
Fairly Easy Puzzle

You think you could do without too much trouble. Ideally, your class-
mates will agree that it’s fun and not too hard.

Make Your Own
Difficult Puzzle

You are pretty sure is solvable, even if it’s difficult. You should prob-
ably only use 2 or 3 hearts, and they shouldn’t be too close together.
Too much symmetry will make your puzzle too easy, though some
symmetry can be okay.

Make Your Own
Impossible Puzzle

You’re pretty sure is impossible, maybe because the hearts are too
close together. It’s easy to make apparently-impossible puzzles that
have 20 or more randomly scattered hearts, but much more elegant
and compelling to make apparently-impossible puzzles with only 2 or
3 hearts. In fact, it’s worth trying to think of the simplest puzzle you
can that you’re pretty sure is impossible.

Figure 1: Puzzle Types!

Figure 2: Make your own puzzles!
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3.2 Extensions: Connecting “Cutting out Hearts” to Content Stan-
dards

“Cutting out Hearts” can be used to support or introduce content standards from kindergarten
through high school. This happens naturally in grades 4 and 8, and in high school geometry,
where symmetry is an explicit part of the common core standards. However, there are a
number of activities that connect “Cutting out Hearts” to other standards involving fractions
and algebraic expressions.

3.2.1 Kindergarten: Language

“Cutting out Hearts” is a great opportunity to incorporate language about position and dimen-
sion, as suggested in the following content standards:

CCSS.MATH.CONTENT.K.G.A.1. Describe objects in the environment using names of shapes,
and describe the relative positions of these objects using terms such as above, below, beside, in
front of, behind, and next to.

CCSS.MATH.CONTENT.K.G.A.3. Identify shapes as two-dimensional (lying in a plane, “flat”)
or three-dimensional (“solid”).

3.2.2 Grades 1-3: Fraction Connections

The rectilinear folds required for Puzzles A through I have significant similarity to the pictures
we create to teach fractions in the lower grades, as in Figure 3. We can use this to reinforce
ideas of fraction and correspondence.
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Figure 3: Early elementary fractions exercises, taken from Singapore Math Standards Edition,
1B and 2B.

To connect “Cutting out Hearts” to these early elementary fraction exercises, draw the folds
needed for Puzzles A through I, as in Figure 4, and note how they divide the paper into halves,
thirds, or quarters, with each fractional part being a congruent rectangle, and each fractional
part containing one half-heart. Then look through the rest of the puzzles to find other designs
that can be divided into congruent parts that each contain a heart or half-heart. For example,
Puzzle T can be divided into two triangles each containing a heart, or four rectangles each
containing a half-heart. Draw students’ attention to the similarity with visual fraction exercises
they’ve seen elsewhere.

(The fractions associated with Puzzles A-F will be appropriate for 1st grade. Second grade can
add Puzzle G, and third grade can work with puzzles A-I. Once you’ve seen how your students
respond, you can see which other puzzles you might want use.)
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Figure 4: Building fraction representations with rectilinear fold lines. This can also be done
with circular paper and rosette symmetry.

This activity aligns with the following common core standards:

CCSS.MATH.CONTENT.1.G.A.3. Partition circles and rectangles into two and four equal
shares, describe the shares using the words halves, fourths, and quarters, and use the phrases
half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand
for these examples that decomposing into more equal shares creates smaller shares.

CCSS.MATH.CONTENT.2.G.A.2. Partition a rectangle into rows and columns of same-size
squares and count to find the total number of them.

CCSS.MATH.CONTENT.2.G.A.3. Partition circles and rectangles into two, three, or four
equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and
describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of
identical wholes need not have the same shape.

CCSS.MATH.CONTENT.3.G.A.2. Partition shapes into parts with equal areas. Express the
area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts
with equal area, and describe the area of each part as 1/4 of the area of the shape.
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3.2.3 Grade 4: Practicing with Geometry Language and Tools

The 4th grade common core standards lay most of the foundation for Euclidean geometry and
measurement: angles and their measures, parallel and perpendicular lines, symmetry. The
unfolded solutions left over from “Cutting out Hearts” provide straightforward practice with
these concepts. Teachers can ask their students:

• Which fold lines are perpendicular?
• Which are parallel?
• What angles do you see in the fold lines for Puzzle C? J? M?
• To do a perfect job folding Puzzle M, use a protractor and draw your fold lines first.
• What if you wanted to make a rosette of hearts with 5-fold symmetry? Can you do the

division, and use a protractor to draw the fold lines on paper?

This type of work aligns with the following common core standards:

CCSS.MATH.CONTENT.4.MD.C.5. Recognize angles as geometric shapes that are formed
wherever two rays share a common endpoint, and understand concepts of angle measurement:

a. An angle is measured with reference to a circle with its center at the common
endpoint of the rays, by considering the fraction of the circular arc between the
points where the two rays intersect the circle. An angle that turns through 1/360
of a circle is called a “one-degree angle,” and can be used to measure angles.

b. An angle that turns through n one-degree angles is said to have an angle measure
of n degrees.

CCSS.MATH.CONTENT.4.MD.C.6. Measure angles in whole-number degrees using a protrac-
tor. Sketch angles of specified measure.

CCSS.MATH.CONTENT.4.G.A.1. Draw points, lines, line segments, rays, angles (right, acute,
obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

CCSS.MATH.CONTENT.4.G.A.2. Classify two-dimensional figures based on the presence or
absence of parallel or perpendicular lines, or the presence or absence of angles of a specified
size. Recognize right triangles as a category, and identify right triangles.

CCSS.MATH.CONTENT.4.G.A.3. Recognize a line of symmetry for a two-dimensional figure
as a line across the figure such that the figure can be folded along the line into matching parts.
Identify line-symmetric figures and draw lines of symmetry
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3.2.4 Grades 4-7: Finding Patterns, Writing and Evaluating Expressions

In grades 4-7, the common core standards emphasize analyzing patterns and relationships, and
using expressions to represent these. For example, the dot patterns in Figure 5 encourage
students to find a pattern, represent it with an algebraic expression, and use their expression
to predict the number of dots in a much larger configuration.

Figure 5: A standard find-the-pattern-write-an-expression problem from Beast Academy 5C.

“Cutting out Hearts” gives rise to similar pattern and expression questions, as shown in Figures
6 and 7.
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Figure 6: How many fold lines are needed to cut out h hearts, if we restrict ourselves to vertical
folds?
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Figure 7: If we repeatedly fold the paper in half, alternating vertical and horizontal folds, how
many hearts can we cut out? How many fold lines will we create? (This second question is
substantially more challenging.)
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Students and teachers can create similar pattern-and-expression questions to investigate rosette
symmetry. This approach could also give rise to a new kind of puzzle: given a fold pattern on
an unfolded piece of paper, and one half-heart to be cut, can a student predict how many total
hearts will be cut out?

These types of questions align strongly with the following common core standards:

CCSS.MATH.CONTENT.4.OA.C.5. Generate a number or shape pattern that follows a given
rule. Identify apparent features of the pattern that were not explicit in the rule itself. For
example, given the rule “Add 3” and the starting number 1, generate terms in the resulting
sequence and observe that the terms appear to alternate between odd and even numbers. Explain
informally why the numbers will continue to alternate in this way.

CCSS.MATH.CONTENT.5.OA.A.3. Generate two numerical patterns using two given rules.
Identify apparent relationships between corresponding terms. Form ordered pairs consisting of
corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.
For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and
the starting number 0, generate terms in the resulting sequences, and observe that the terms in
one sequence are twice the corresponding terms in the other sequence. Explain informally why
this is so.

CCSS.MATH.CONTENT.6.EE.A.1.Write and evaluate numerical expressions involving whole-
number exponents.

CCSS.MATH.CONTENT.6.EE.A.2.Write, read, and evaluate expressions in which letters stand
for numbers.

a. Write expressions that record operations with numbers and with letters standing
for numbers. For example, express the calculation “Subtract y from 5” as 5− y.

b. Identify parts of an expression using mathematical terms (sum, term, product,
factor, quotient, coefficient); view one or more parts of an expression as a single
entity. For example, describe the expression 2(8 + 7) as a product of two factors;
view (8 + 7) as both a single entity and a sum of two terms.

c. Evaluate expressions at specific values of their variables. Include expressions that
arise from formulas used in real-world problems. Perform arithmetic operations,
including those involving whole number exponents, in the conventional order when
there are no parentheses to specify a particular order (Order of Operations). For
example, use the formulas V = s3 and A = 6s2 to find the volume and surface area
of a cube with sides of length s = 1/2.

CCSS.MATH.CONTENT.7.EE.B.4. Use variables to represent quantities in a real-world or
mathematical problem, and construct simple equations and inequalities to solve problems by
reasoning about the quantities.
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a. Solve word problems leading to equations of the form px+q = r and p(x+q) = r,
where p, q, and r are specific rational numbers. Solve equations of these forms
fluently. Compare an algebraic solution to an arithmetic solution, identifying the
sequence of the operations used in each approach. For example, the perimeter of a
rectangle is 54 cm. Its length is 6 cm. What is its width?

b. Solve word problems leading to inequalities of the form px + q > r or px +
q < r, where p, q, and r are specific rational numbers. Graph the solution set of
the inequality and interpret it in the context of the problem. For example: As a
salesperson, you are paid $50 per week plus $3 per sale. This week you want your
pay to be at least $100. Write an inequality for the number of sales you need to
make, and describe the solutions.

3.2.5 Grade 8 and High School Geometry: Isometries

In 8th grade and in high school geometry, the common core standards emphasize the more intu-
itive isometries of the plane: translation, rotation, and reflection. While the common core does
not explicitly mention glide reflections, they are frequently included in high school geometry
curricula, and the following activity is significantly richer if you include glide reflections in your
discussion.

Older students are ready to name the rigid motions that take one half-heart to another. We
present the exercise on the following page as one example of a way to convert a “Cutting
out Hearts” Puzzle to a symmetry identification exercise. However, most of the “Cutting out
Hearts” Puzzles can be used in this way.

Quick Answer Key for Exercise on Next Page:

• Half-hearts 1, 3, and 4 are reflections of the original half-heart, and just one fold is required
to overlay the original half-heart on any one of them.

• Half-heart 2 is a translation of the original half-heart, and two folds are required to overlay
the original half-heart on it.

• Half-hearts 5 and 7 are rotations of the original half-heart, and two folds are required to
overlay the original half-heart on either of them.

• Half-heart 6 is a glide reflection of the original half-heart, and three folds are required to
overlay the original half-heart on it.
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Half-Heart Isometries

original 1 2 3

4 5 6 7

What kinds of isometries take the original half heart to the other half hearts? Translation?
Rotation? Reflection? Glide Reflection? How many folds are required to overlay the original
half heart onto each of the other half hearts (possibly with other paper between them)?

Transformation Isometry Number of Folds

original → 1 reflection 1

original → 2

original → 3

original → 4

original → 5

original → 6

original → 7
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This exercise aligns strongly with the following common core standards:

CCSS.MATH.CONTENT.8.G.A.1. Verify experimentally the properties of rotations, reflec-
tions, and translations:

a. Lines are taken to lines, and line segments to line segments of the same length.

b. Angles are taken to angles of the same measure.

c. Parallel lines are taken to parallel lines.

CCSS.MATH.CONTENT.8.G.A.2. Understand that a two-dimensional figure is congruent to
another if the second can be obtained from the first by a sequence of rotations, reflections,
and translations; given two congruent figures, describe a sequence that exhibits the congruence
between them.

CCSS.MATH.CONTENT.HSG.CO.A.5. Given a geometric figure and a rotation, reflection, or
translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry
software. Specify a sequence of transformations that will carry a given figure onto another.

CCSS.MATH.CONTENT.HSG.CO.B.6. Use geometric descriptions of rigid motions to trans-
form figures and to predict the effect of a given rigid motion on a given figure; given two figures,
use the definition of congruence in terms of rigid motions to decide if they are congruent.

CCSS.MATH.CONTENT.HSG.CO.D.12. Make formal geometric constructions with a vari-
ety of tools and methods (compass and straightedge, string, reflective devices, paper folding,
dynamic geometric software, etc.).
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4 Educational Objectives

“Cutting out Hearts” meets a range of educational objectives, from lofty ideals – joy, curios-
ity, exploration, perseverance, creativity – to geometric building blocks – reflection, isometry,
congruence, construction – to visual-spatial and fine-motor skill development.

4.1 Higher Order Goals

Overcoming Challenges. Students deserve genuine challenges and the time and space they
need to solve them. “Cutting out Hearts” is one way to do that, in a highly differentiated way
that meets each student at their point of challenge.

Focus and Perseverance. Students deserve to learn from experience rather than lecture
whenever possible. A teacher can introduce “Cutting out Hearts” in a couple minutes, and
then students can immediately dive in, get hooked on the puzzle aspect, and work in a self-
directed way for the rest of class. Math is more fun when you’re figuring it out for yourself
rather than listening to a teacher explain!

Mathematical Questioning. “Cutting out Hearts” shows students how they can find deep
mathematics in unexpected places. It starts with a simple kindergarten activity and grows that
activity into something wild and surprising.

4.2 Inclusion

Inviting Marginalized Students into Mathematics. “Cutting out Hearts” shares a key
positive trait with much of recreational math: it creates space where students who don’t love
calculation-based math can experience joy and triumph. Students with learning differences and
students from groups historically marginalized in mathematics particularly deserve opportuni-
ties like this to hear, “This is mathematics too. It is fun, and you are good at it.” Frequently
the students who solve the most difficult heart-cutting puzzles are not the strongest algebraic
manipulators or the math contest stars – and when they feel satisfaction with their puzzle
solutions, they also feel more welcome in mathematics.

Connecting Mathematics with Girl Iconography. In US children’s marketing, hearts are
pink, sweet, frilly, and rhinestone-studded – Barbie, not Oppenheimer. “Cutting out Hearts”
sends a message: girl-associated activities lead to tough, deep, mathematical questions.
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4.3 Cognitive and Motor Skills

“Cutting out Hearts” requires students to exercise both Fine Motor Skills and Visual-
Spatial Skills. These have repeatedly been associated with mathematical ability in students.
While the causative mechanism is a subject of ongoing research, it is likely valuable to work on
these skills in a mathematical context. Additionally the pleasure of craft-like work helps many
students open themselves to daunting puzzles.

4.4 Common Core Standards

4.4.1 Standards for Mathematical Practice

As a sequence of geometric reasoning puzzles, “Cutting out Hearts” is aligned with these stan-
dards of mathematical practice:

CCSS.MATH.PRACTICE.MP1. Make sense of problems and persevere in solving them.
CCSS.MATH.PRACTICE.MP2. Reason abstractly and quantitatively.
CCSS.MATH.PRACTICE.MP5. Use appropriate tools strategically.
CCSS.MATH.PRACTICE.MP6. Attend to precision.
CCSS.MATH.PRACTICE.MP7. Look for and make use of structure.
CCSS.MATH.PRACTICE.MP8. Look for and express regularity in repeated reasoning.

While the activity does not require students to collaborate, the author certainly encourages it,
and nearly all the students she has worked with have chosen to work together part of the time.
When students collaborate, the activity is also aligned with

CCSS.MATH.PRACTICE.MP3. Construct viable arguments and critique the reasoning of
others.

4.4.2 Standards for Mathematical Content

“Cutting out Hearts” aligns naturally with some content standards. In other cases extensions
of “Cutting out Hearts” can be used to introduce or reinforce content standards that, on first
glance don’t seem as clearly connected to the activity. See Section 3.2 for these extension
activities. We have listed all the relevant content standards in the following table.
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Immediate/Natural Connection Connects via Extension Exercise
CCSS.MATH.CONTENT.4.G.A.3 CCSS.MATH.CONTENT.K.G.A.1
CCSS.MATH.CONTENT.8.G.A.2 CCSS.MATH.CONTENT.K.G.A.3
CCSS.MATH.CONTENT.HSG.CO.A.5 CCSS.MATH.CONTENT.1.G.A.3
CCSS.MATH.CONTENT.HSG.CO.B.6 CCSS.MATH.CONTENT.2.G.A.2
CCSS.MATH.CONTENT.HSG.CO.D.12 CCSS.MATH.CONTENT.2.G.A.3

CCSS.MATH.CONTENT.3.G.A.2
CCSS.MATH.CONTENT.4.MD.C.5
CCSS.MATH.CONTENT.4.MD.C.6
CCSS.MATH.CONTENT.4.G.A.1
CCSS.MATH.CONTENT.4.G.A.2
CCSS.MATH.CONTENT.4.G.A.3
CCSS.MATH.CONTENT.4.OA.C.5
CCSS.MATH.CONTENT.5.OA.A.3
CCSS.MATH.CONTENT.6.EE.A.1
CCSS.MATH.CONTENT.6.EE.A.2
CCSS.MATH.CONTENT.7.EE.B.4
CCSS.MATH.CONTENT.8.G.A.1
CCSS.MATH.CONTENT.8.G.A.2
CCSS.MATH.CONTENT.HSG.CO.A.5
CCSS.MATH.CONTENT.HSG.CO.B.6
CCSS.MATH.CONTENT.HSG.CO.D.12

For completeness, we list here the content standards that align naturally with “Cutting out
Hearts” without any need for extension exercises:

CCSS.MATH.CONTENT.4.G.A.3. Recognize a line of symmetry for a two-dimensional figure
as a line across the figure such that the figure can be folded along the line into matching parts.
Identify line-symmetric figures and draw lines of symmetry.

CCSS.MATH.CONTENT.8.G.A.2. Understand that a two-dimensional figure is congruent to
another if the second can be obtained from the first by a sequence of rotations, reflections,
and translations; given two congruent figures, describe a sequence that exhibits the congruence
between them.

CCSS.MATH.CONTENT.HSG.CO.A.5. Given a geometric figure and a rotation, reflection, or
translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry
software. Specify a sequence of transformations that will carry a given figure onto another.

CCSS.MATH.CONTENT.HSG.CO.B.6. Use geometric descriptions of rigid motions to trans-
form figures and to predict the effect of a given rigid motion on a given figure; given two figures,
use the definition of congruence in terms of rigid motions to decide if they are congruent.

CCSS.MATH.CONTENT.HSG.CO.D.12. Make formal geometric constructions with a vari-
ety of tools and methods (compass and straightedge, string, reflective devices, paper folding,
dynamic geometric software, etc.).
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5 Theoretical Considerations

5.1 Pedagogical and Theoretical Contrast with Fold-and-One-Cut

“Cutting out Hearts” clearly bears some resemblance to fold-and-one-cut activities. However
there are theoretical and pedagogical differences that are worth highlighting.

The Fold-and-One-Cut Theorem roughly states that, given any collection of straight line seg-
ments in the plane, there exists a flat folding of the plane that maps these line segments (and
nothing else) to a line. This was proved by Demaine, Demaine, and Lubiw in 1998.

Practically, this means that one can cut out any polygon one wishes by folding a piece of
paper several (possibly many) times and then cutting along one straight line. This is often
implemented in math explorations by giving students printouts of polygons which they then
fold and cut out with one single cut.

5.1.1 Differences in Implementation and Pedagogical Goals

“Cutting out Hearts” has a different feel from fold-and-one-cut because it requires cutting out
many hearts simultaneously, rather than a single polygon. This is consistent with the original
motivating problem of cutting out snowflakes2, which tend to appear more artistic and complex
than the polygons associated with fold-and-one-cut exercises.

“Cutting out Hearts” is implemented so that students begin with blank or old scrap paper,
rather than paper with the heart designs printed on it. This pushes students to visualize
the folds they will need to make rather than folding thick lines on top of each other; this
visualization work may be a higher level of visual spatial skill development. Additionally this
approach allows us to use old scrap paper, which is cheaper and less wasteful. While this
approach is also sometimes used with fold-and-one-cut activities, it is less common.

5.1.2 Differences in Theoretical Aspects

On the theoretical side, the Fold-and-One-Cut Theorem does not apply to curved heart shapes.
This may seem like a technicality since curved shapes can be approximated by polygons, but

2The author tried and failed to teach her kindergarteners to make paper snowflakes. They loved folding
and cutting paper, but couldn’t wrap their heads around the diagonal folds required for rosette symmetry.
Instead they made rectilinear folds and were delighted by the funny patterns they made. She decided to reverse
the process and challenge them to create these rectilinear patterns purposefully. Since Valentine’s Day follows
winter snowflakes, hearts were the obvious next step. Once the kindergarteners were on a roll cutting out grids
of hearts, she took the activity to her first and second graders, adding some slightly harder puzzles. Eventually
she stretched the puzzle range all the way up to the eighth graders.
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in fact the requirement that curved sides be folded onto each other so that they match exactly
leads to different constraints, and substantially different types of solutions, as described in the
next section.

5.2 Fold-and-One-Stamp-Cut

“Cutting out Hearts” is a special case of what we’ll call the fold-and-one-stamp-cut problem:
Given a finite collection of congruent shapes (where shapes are simple closed curves, like poly-
gons or outlines of hedgehogs) in the plane is it possible to make a flat folding of the plane that
layers all the shapes exactly on top of each other, with no other parts of the plane included in
the layering, so that all the shapes could be cut out simultaneously with a single stamp cut?

Hearts are a special case because they have a line of symmetry. To better illustrate fold-and-
one-stamp-cut problems, we might create designs from repeated outlines of hedgehogs (which
have no nontrivial symmetry), and ask solvers to fold paper so that the hedgehog outlines
agree. However, pedagogically, hearts have many advantages: familiarity, association with
girls’ activities, ease of cutting with scissors.

5.3 Conjecture

Spoiler Alert: do not read this section or look at the pictures on the next page if
you don’t want to know how to solve puzzle W.

We conjecture that, for any finite collection of non-intersecting congruent bounded shapes in
the plane, it is possible to uniformly shrink all of the shapes (say, by dilation around their
centers of mass) enough that there exists a flat folding of the plane that maps all the shapes
and no other points to a single copy of the shape, so that they can all be cut out with one
punch of a stamp cutter, without cutting any other part of the plane.

In the following section, we will prove this for mirror-symmetric shapes like hearts.

However we are not confident about this conjecture in the more general case of shapes without
reflection symmetry. Nonetheless we offer a demonstration that it is true for a collection of just
two shapes. This demonstration is essentially due to Jonah H, who, as an 8th grader, was the
first person to solve Puzzle W using this method.
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Consider two congruent shapes H1 and H2 inside a planar region R. Since we are allowed, by
the terms of the conjecture, to shrink the shapes as much as we like, we can make the distance
between them as large as we like compared to their size. Let S be a long narrow ribbon-like
strip containing the two shapes, with one shape at either end of the strip. It is possible to
accordion-pleat R so that only S is visible. Then S can be folded several times to perfectly
layer H2 on top of H1. (See Figure 8 for the example of a horizontally translated shape with
no nontrivial symmetry.)

Figure 8: Solving Puzzle W, except with hedgehogs. More generally, overlaying any two distant
congruent shapes.

It is worth noting that in the case of shapes with no reflection symmetry, an infinite set of folds
is likely needed, as in the case of the pleats in the above example.

By contrast, in the case of mirror-symmetric shapes, it suffices to use a finite set of folds which
rotate the shapes in the manner of origami twist folds. See Figure 9 for an example of twist
folds that begin to convert Puzzle X into the more easily solvable Puzzle M, albeit with smaller
hearts.
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Figure 9: Using triangle twists (a technique from origami tessellations) to change the orientation
of hearts. Mountain folds are magenta dash-dot lines, and valley folds are turquoise dashed
lines.

Mirror-symmetric shapes and shapes without reflection symmetry differ in a critical manner:
mirror-symmetric shapes can be folded on top of each other with the same side of the paper
touching. By contrast, shapes without reflection symmetry must be overlaid with different
sides of the paper touching, as demonstrated in Figure 10. This may lead to unresolvable paper
collisions, causing our conjecture to fail for shapes without mirror symmetry.

Figure 10: Hearts and hedgehogs on paper that is orange on one side and yellow on the other.
The hearts, which are mirror-symmetric, can be overlaid with the yellow sides touching. By
contrast, the hedgehogs, which do not have reflection symmetry, must be overlaid so that the
orange side of one hedgehog touches the yellow side of the other hedgehog.
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5.3.1 A Proof in the Case of Mirror-Symmetric Shapes

In fact our conjecture is true in the case of mirror-symmetric shapes and stamp cutters that
cut out half of each shape. That is, all heart puzzles are technically solvable if we are allowed
to shrink the hearts to an arbitrarily small size.

The proof is by construction; we will present an algorithm in four steps, with possible shrinking
occurring at each step. In each of the figures that follow, dashed lines indicate valley folds and
dot-dashed lines indicate mountain folds.

Step 1: Rotate all the shapes, so that their symmetry axes are all distinct and
oriented in the same direction. We can rotate a single shape using origami machinery
called an open-back square twist, as shown in Figure 11. Such twists can rotate any square
region up to 90◦ relative to the rest of the plain.

We choose a direction v such that no two shapes have centers of mass that lie on a line with
direction v; this avoids a circumstance in which two shapes share the same symmetry axis. We
then rotate each shape serially, using open-back square twists, so that each shape is oriented
with its symmetry axis aligned with v, as shown in Figure 12. This may require multiple
twists if a shape must be rotated 90◦ or more. We are always guaranteed that an open-back
square twist rotation by a given angle under 90◦ is possible because we can choose any two
perpendicular directions for the pleat folds, and only a finite number of possible choices create
conflicts where a mountain crease of the pleat folds passes through the center of mass of another
shape. (In some cases the mountain creases will come too close to other shapes, but this is
avoided by shrinking the shapes further and using an open-back square twist with a smaller
square size.)
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Figure 11: An open-back square twist. The outer square will be twisted by an angle 2θ < 90◦

relative to the rest of the paper, and the gray shaded square region will not overlap any other
paper layers after folding. (It is possible to twist the square by exactly 90◦, but this results
in multiple layers of paper everywhere in the interior of the square, which interferes with the
fold-and-stamp-cut process.)
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Figure 12: Twisting all shapes so that they have the same orientation. The three shapes on
the left have already been twisted so that their symmetry axes are vertical, with all hearts
right-side-up. The middle shape is shown being twisted, and the three shapes on the right will
be twisted next.
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Step 2: Compress the shapes into a long narrow rectangular region. Without loss of
generality, we rotate the paper so that the symmetry axes of the shapes are all vertical. We
then use horizontal pleats, as in Figure 13, to move the shapes into a long, thin rectangular
region, so that any two shapes have greater horizontal separation than vertical separation. As
before, if any two shapes are too close together to make such pleats, we shrink the shapes until
the pleating is possible.

Figure 13: Translating all shapes vertically by means of horizontal pleats so that they fit in a
rectangle that is wide horizontally and narrow vertically. The shapes have been shrunk so that
the pleats can be made wide enough that the horizontal separation between any two shapes is
greater than their vertical separation.

Step 3: Align all shapes horizontally. We use 45◦ diagonal pleats, as in Figure 14, to
align all shapes horizontally. The existence of such a pleating is guaranteed by our prior choice
to ensure that the horizontal separation between any two shapes is greater than their vertical
separation. As usual, if the pleating overlaps any shapes, we shrink the shapes until the overlap
no longer occurs.
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Figure 14: Translating all shapes diagonally by means of 45◦ pleats so that the shapes are
horizontally aligned.

Step 4: Overlay all half-hearts. Finally, we pleat the plane, by means of mountain folds
along the shapes’ symmetry axes and valley folds midway between successive symmetry axes,
so that all half-shapes are exactly overlaid, as in Figure 15. This completes the proof.

Figure 15: Using vertical pleats to overlay all half-hearts.
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5.4 Impossible Configurations

We suspect that many collections of congruent shapes are impossible. For example, in the
limiting case below of two tangent hearts shown in Figure 16, it seems necessary to fold along
the tangent line to have any hope of overlaying the hearts – and since the tangent line is not a
line of reflection, the two hearts will not lie exactly on top of each other.

Figure 16: Two tangent hearts. These cannot be folded exactly on top of each other.

More generally, it may be that hearts that take up too much of the paper in a non-mirror-
symmetric configuration, like those in Figure 17, are impossible. Deciding if a heart puzzle is
possible without shrinking the hearts is a significant topic worth further study.

Figure 17: It seems unlikely that these hearts can be folded on top of each other without first
shrinking the hearts.
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5.5 A Technical Point

Fold-and-one-cut algorithms work in part because they are allowed to pleat straight line seg-
ments on top of themselves many times. In fact this can be done with many shapes whose
boundaries are composed of segments of constant curvature. In the puzzles above, we have
purposely chosen a heart shape whose boundary has no segments with constant curvature to
prevent this approach. It is possible that the hearts in Figure 18, with appropriate trimming of
the boundary region, can be folded so that the two hearts, whose boundaries are composed of
straight line segments and circular arcs, can be cut out with a single cut composed of a short
straight segment and a short circular arc.

Figure 18: These hearts are composed of straight line segments and circular arcs. Consequently
they admit many pleated folds along their constant curvature boundary segments.
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