
4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 1/10

Rohan Mehta

T

The Attention Mechanism
Demystiûed
5/17/2022 " Rohan Mehta | Deep Learning, NLP

he transformer 3 a neural net architecture proposed in Vaswani et al., 2017 3 has taken the NLP world by storm
in the past few years, contributing to the recent success of OpenAI's GPT-3 among many others. But while there
is an abundance of online material describing the transformer architecture, its crucial theoretical contribution 3
the key, query, and value attention mechanism 3 lacks a clear, accessible explanation, especially from the

perspective of what motivated it and why it works. The focus of this post is to hopefully provide some of that intuition,
and demonstrate why the attention mechanism is so powerful.

Attending To Thy-Self
Before we delve further into how the transformer phrases self-attention mathematically, it's worth clarifying what exactly
<self-attention= means. Just like a standard layer of neurons, the self-attention operation is some parameterized,
differentiable function we can include in our neural nets. Unlike these layers though, it works on sets of vectors (rather
than vectors themselves), and learns some function to linearly combine each element with all the others.

You can think of it a bit like a blender: it blends all other elements into the current element, creating some new hybrid
element that contains contextual information about the set as a whole. The intuition here is that the network is learning
to focus some of its <attention= on elements other than the one it is currently processing, hence the operation's name.

Fig. 1. Example of self-attention. The word being processed (red) learns to attend to other words (blue) and incorporates
them in differing amounts (Source: Cheng et al., 2016).

Rohan Mehta

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 2/10

And this turns out to be incredibly helpful, especially in situations where context matters (like understanding language).
What's more, it offers a distinctive advantage over other, more traditional ways of embedding context, like recurrent neural
nets.

RNNs try and smush the whole context into a single vector. This compression means that some information will inevitably
be lost, especially as the text being interpreted gets longer and more complex. Moreover, only a small part of this vector
may actually be useful to any given element, and having to block out the noise introduces unnecessary complexity.

Fig. 2. RNNs have to compress their entire input text into a single vector; only parts of each word's representation are
conserved (Source: Unknown).

Self-attention, on the other hand, allows any element of the input to directly attend to any other element. As such, each
element gets to deûne its own unique context vector! And since it only has to account for the local context (unlike in
RNNs), this vector can be much more precise about the information it does contain.

Fig. 3. Self-attention allows each element to access the entire representation of any other element, rather than some
compressed version of it (Source: Vaswani. et al., 2017).

But how exactly does a given element decide how much to attend to another element? And how does it use this
information to build up its associated context vector? To get to the real meat of the attention mechanism, we need to
start phrasing things mathematically.

Let's imagine we have a matrix that contains the vector representations of some input text in its columns. Suppose we
also have a vector which contains the attention coefûcients for one of these words (i.e., how much that word wants to
attend to every other word).

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 3/10

When computing the new representation for this word, we want it to incorporate other words such that it more strongly
incorporates words with which it has a high attention coefûcient, and more weakly incorporates those with which it has
low attention coefûcient.

The easiest way to do this is by a weighted sum (of vectors), This is equivalent to the matrix-
vector product In other words, calculating this matrix-vector product gives us our chosen word's speciûc context
vector.

However, we still need to ûnd some function that is capable of computing the vector for each word in the ûrst place.
Given the embeddings of two words, it needs to determine how strongly one should attend to the other (and vice versa).

Intuitively, it makes sense that the more similar two words are, the more they would want to attend to one another. So
perhaps we can just deûne the attention coefûcient between two words as the dot product of their embeddings.

It
Noun

Noun Noun
Noun

Adj
Adj Adj

Adj
Is

Fig. 4. If we inform our self-attention algorithm based on vector similarity we might expect pronouns (e.g., <it=) to be close
to nouns, and linking verbs (e.g., <is=) to be close to adjectives.

Unfortunately, this idea has two key üaws that stop it from working outright. To see what I mean, consider the words <hot=
and <cold=. For now, we're going to make the simpliûcation that word-embeddings only reüect word-meaning. In other
words, the representations for <hot= and <cold= should point in opposite directions, since they are antonyms.

However, it's also likely that both words will want to attend highly to the word <temperature=, as in the phrase <The
temperature is hot= or <The temperature is cold=. If both <hot= and <cold= want to attend highly to <temperature=, then
their embeddings must be close to its embedding, as that's the only way they will yield a high dot product with one
another, and thus 3 as we've deûned it 3 a high attention coefûcient.

But by making the representations of <hot= and <cold= closer to the representation of <temperature=, we are necessarily
making them closer to one another, and therefore losing the information that they are antonyms!

HotCold

Te
m
p

Ho
tCold

Fig. 5. Making the representations of <hot= and <cold= closer to that of <temperature= also causes them to be closer to
another (as can be seen on the right). This overwrites the information that they are antonyms.

In other words, it's not possible to encode data about attentional relationships into our word-embeddings without
compromising the information about semantic relationships that's already there. Dot production attention requires that
we choose between one or the other.

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 4/10

Of course, it's worth noting that this argument is extremely low-dimensional. In the thousand-dimensional vector spaces
that our word-embeddings actually occupy in practice, there are several more degrees of freedom for the neural network
to play around with. However, at the very least, it is easy to recognize that these two different pieces of information can
lead to competing effects, and that there may be a better way to store them.

As if that wasn't bad enough, there's another, arguably even worse problem. Attention is not a mutually reciprocal action,
but similarity is.

Consider the sentence <He picked up the tennis ball and found it was wet.= We would probably expect <it= to attend highly
to <ball= (what <it= is referring to) while <ball= would probably attend highly to <tennis= and <picked up= (its type and the
action performed on it), but much more weakly to <it= (after all, what new information does it gain from this?).

However, even though it might be more advantageous for <ball= to attend weakly to <it=, so long as <it= attends strongly to
<ball=, <ball= must attend to <it= with equal strength.1 This is because making <it= closer to <ball= necessarily makes <ball=
closer to <it= by an equal amount.

Fig. 6. If we use similarity as an indicator for self-attention, then attention becomes reciprocal. The original attention (in
black) will be automatically reciprocated (in red).

More generally if a word X attends highly to another word Y, then Y must attend as highly to X by default. Furthermore,
since X is similar to Y it is also similar to those words which are also similar to Y (words which Y attends highly to) and by
extension those words which are similar to those words which are similar to Y (the words the words similar to Y attend
highly to) and so on and so forth. Thus, everything will end up attending to everything else!

Evidently, using similarity as a metric for self-attention comes with its problems. But if we could get it to work, a dot
product attention mechanism would be awfully nice. And it seems to make a great deal of intuitive sense as well. So how
can we resolve its shortcomings?

Keys, Queries, and Values
The answer, in fact, is deceptively simple: with multiple embedding spaces. Let's consider our ûrst problem again. There
wasn't enough room in a single word-embedding to hold information about both word meaning and attentional
relationships.

The natural thing to do, then, would be to distribute this information throughout multiple representations, as opposed to
trying to cram it all into just one.

So let's create two embedding spaces. In , the vector representation of each word will encode the semantic
information associated with that word. It is in this space that <hot= and <cold= will be oppositely positioned. Conversely, in

, word-embeddings will hold attentional information 3 here, <hot= and <cold= will be close together along with
<temperature=. But this is no longer an issue, as we have preserved the information that they are antonyms within !

HotCold

Te
m
p

E

Ho
tCold

E

Fig. 7. So our visualization from earlier wasn't necessarily wrong 3 it would just have to take place in separate embedding
spaces. (semantic-space) is on the left and (attention-space) is on the right.

Rohan Mehta

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 5/10

This seems to solve our ûrst problem, but it doesn't do much to help us with our second one. By having <hot= and <cold=
attend highly to <temperature=, we're still forcing it to attend highly to them, as well (which it may actually want to do, but
shouldn't have to).

Luckily for us though, this has a very similar ûx: add another embedding space. More speciûcally, we need to split our
second embedding space, , into two separate spaces.

Let's call them and We can then deûne self-attention as follows. When calculating self-attention with respect to
<it= (i.e., how much <it= attends to <ball=) we dot its embedding in with the embedding of <ball= in Likewise, dotting
the representation of <ball= in with that of <it= in will give us self-attention with respect to <ball=.

As both operations deal with different embeddings (<it= in and <ball= in vs. <ball= in and <it= in) attention
doesn't reciprocate. But, what is the intuition behind this operation?

Essentially, what we're doing is computing two representations for each word: one is a <key=, and the other is a <lock=.
Computing self-attention with respect to some word X is a matter of seeing how similar other words' lock-representations
are to its key-representation.

But just because a word Y's lock-representation is similar to X's key-representation doesn't imply the opposite 3 its key-
representation may not be similar to X's lock representation!

It
E

Ball

It

Ball

E

Fig. 8. is on the right and is on the left. Notice that the representation of <it= in is close to the representation of
<ball= in (<it= attends highly to <ball=) but the representation of <ball= in is rather far from the representation of <it=
in (<ball= attends weakly to <it=).

To adopt the transformer's lingo, we refer to these key- and lock-representations as queries (key-representations) and
keys (lock-representations), respectively. Put simply, a word's key is the information it chooses to expose about itself (the
lock), while its query is the information it looks for in other words, when determining how much to attend to them (the
key).

For example, the query of the word <it= might be something like <I attend highly to nouns 3 are you a noun?=, while its key
might be <I am a pronoun=. Since the key of <ball= is <I am a noun=, it would strongly satisfy the query of <it=, causing <it= to
attend highly to <ball=.

But crucially, since the key of <it= doesn't answer the query of <ball= with similar strength (<I attend highly to adjectives 3
are you an adjective?=), <ball= will attend very weakly to <it=.

We can visualize this idea even more viscerally by overlaying the embedding spaces containing our keys and queries atop
one another. When doing so, we see that the angle formed between the key of <it= and the query of <ball= is different from
the angle formed between the key of <ball= and the query of <it=. Different angles means different dot products means
different attention coefûcients!

Rohan Mehta

Rohan Mehta

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 6/10

Fig. 9. An overlay of the embedding spaces and

So what's the mathematics behind all of this, then? How do we formalize these ideas? Let's imagine that we are given
some sentence of variable length and need to ûnd for the th word in this sentence. Given this word's query and the
matrix whose columns are the keys of each word in the input, we can calculate it like so:

This is equivalent to dotting with each entry of and storing the results in a vector, which is exactly how we deûned
key-query attention. But calculating isn't our true goal. What we really want to compute is our current word's context
vector. And, as we realized earlier, this is just the product of with the matrix containing the semantic representations of
all words.

We had said that these representations lived in the embedding space , but to be consistent with the transformer's
jargon, we'll rename it to . Just as key- and lock-representations became queries and keys, we will refer to a word's
semantic representation as its value.

In this vocabulary, self-attention is a sum of words' values weighted by their attention coefûcients, or the dot product of
their key with the current word's query. Thus:

Sprouting Multiple Heads
Given all the complexities we encountered, it's surprisingly satisfying to see everything reduce to such a simple formula!
But there's one glaring detail that we've glossed over so far. We've been assuming that our initial representation for each
word is its semantic representation, or value. So where do its key and query come from?

Instead of ûrst working with our word's value, we might imagine starting with some more general, abstract representation,
that has a broad idea of word meaning, grammar, syntax, etc., but nothing too speciûc. We can then learn a series of
weight matrices to linearly project this representation in three different ways, yielding the word's query, key, and value.

The query weight matrix might, for example, pull out the speciûc parts of this representation that store the types of words
our word is usually accompanied by, while the key weight matrix might project it into a space that is more aware of
grammar, tense, and part-of-speech. Of course, the attention mechanism is much more complex than this, and still not
entirely understood, but rationalizing it in this way helps us understand why it works so well.

Moreover, adopting this perspective also allows us to rewrite our self-attention equation to operate on an entire matrix of
word-embeddings. If we also sprinkle in a softmax and dimensionality constant to keep numbers from getting to large, we
get:2

The full picture, then, is as follows. The self-attention mechanism is parameterized by three learned weight matrices, each
of which projects our general word representation into a speciûc space, which themselves each prioritize a different
aspect of the word's identity. By multiplying together a word's representations in these three spaces we can produce its
new representation, or context vector.

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 7/10

Fig. 10. Single-head self-attention mechanism (Source: Vaswani et al., 2017).

It's also worth considering how self-attention matches up with the convolution operation. They have some striking
similarities. Both are fundamentally ways of embedding context. The key difference between the two is that attention has
no limiting receptive ûeld. It can model arbitrarily long-distance interactions, while convolutions operate on a
predetermined scale.

This makes attention seem like the clear winner. But there is also a less obvious advantage to convolutions that doesn't
become clear until we try to express attention as a convolutional kernel itself. For example, the attention kernel for a
single word would look like this:

Seen in this way, it is intuitively obvious that an attention kernel is less expressive than an arbitrary convolutional one.
Attention is a convolutional kernel where the values are the same in all columns. In particular, they are the attention
coefûcients of the word in question with respect to the word represented by that column. That's because attention is
simply a weighted sum. It is just mixing together what already exists in different proportions.

Fig. 11. Single attention head performing a weighted sum over its input (Source: Vaswani et al., 2019).

Convolutions, on the other hand, have no such limitation. They can transform the input in a much more complex way than
a weighted sum. In fact, they actually do several linear transformations based on the relative position of each of the
elements in the input.

Rohan Mehta

Rohan Mehta

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 8/10

Fig. 12. Convolution applying many linear transformations over its input (Source: Vaswani et al., 2019).

This reveals a drawback of our current attention mechanism. While the weighted sum operation it is doing makes intuitive
sense, it also limits the types of new representations we can create, conûning us to the subspace spanned by the speciûc
words in the input.

We can think of this problem in another way, too. Even though our idea of creating context vectors for each word was a
good ûrst step, we need to go even further. Our key-query attention scheme is overworked. It's trying to consider all of the
meanings and relationships of each word with respect to the current word, and then condense this information into a
single representation, all in one go. Once again, we are straining our information capacity.

We might instead imagine using multiple such attention mechanisms, where each attention mechanism focuses on a
speciûc aspect of each word. For example, instead of relying on one attention mechanism to recognize that a verb should
attend highly to both the person doing it and the object it's being done to, we could split up this work between two
separate attention mechanisms. In this way, each attention mechanism can specialize, and develop its own niche.

Fig. 13. Two attention heads working together. One (in blue) is a <who did it?= attention head, while the other (in red) is a
<to whom?= attention head. (Source: Vaswani et al., 2019).

Mathematically, this means that instead of learning one set of three projection matrices, we will learn multiple such sets 3
one for each attention mechanism, which we'll call attention heads. If we then compute the relevant keys, queries, and
values and plug them into the attention formula, we end up with multiple context vectors for each word, one per attention
head.

Now we're left with the task of combining this set of context vectors into a single context vector for each word. There is a
lot of potential choice for how to do this, but the transformer paper chooses to concatenate3 the output of each
attention head, resulting in a matrix containing that head's recommendation for what each word's context vector should
be. This matrix is then multiplied by one ûnal projection matrix. So the formula for multi-head attention is:

It's worth noting that the argument we used to motivate multi-head attention is still pretty hand-wavy, and how useful
having multiple heads really is is still an issue up for debate. Many papers have found that ablating (or getting rid of) a vast
majority of the attention heads in a transformer can actually have minimal effects on performance. However, it seems that
3 for now at least 3 the conventional knowledge still mostly holds: two heads are better than one.

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 9/10

Fig. 14. Multi-head self-attention mechanism (Source: Vaswani et al., 2017).

Conclusion
There you have it: an intuitive, visual understanding of the attention mechanism! Really, it's all about grappling with some
of the intrinsic properties of vectors, and providing the underlying neural net with ample opportunity to spread
information out across multiple sources before pooling it all together. This design seems simple in hindsight, but therein
lies the engineering genius of the transformer architecture.

Even so, we've still just dipped our toes into the idea of attention. For one, the parallel between attention and
convolutions given above was highly simpliûed, and there is a growing body of research (see this paper for an example)
trying to better understand this relationship, especially as attention makes inroads into the ûeld of computer vision.

Other efforts have tried to model attention from a mechanistic, circuit-level point of view, and have also seen some pretty
interesting results as of late. Even more recently, attention has been linked to ideas such as Hopûeld Networks and, as a
result, spin systems.

That's to say that many of these ideas are still very much in üux. And now that we've laid the groundwork for
understanding the what, why, and how of the attention mechanism, I'm itching to explore them in all of their glory in
future blog posts! So stay tuned for more!

Acknowledgements
Thank you to Dr. Aidan Gomez 3 a co-author of the original transformer paper 3 for taking the time to read my ûrst draft
of this post, and for his words of encouragement. A very special thanks also to Llion Jones (another transformer co-
author!) who provided both exciting conversation and invaluable feedback, especially in regards to maintaining technical
correctness with my intuitive arguments.

Resources
Attention Is All You Need
Ashish Vaswani's 2019 Lecture
Yannic Kilcher's Video on the Transformer

Footnotes
1. This leads to a certain Newton's Third Law of Attention: each act of attention induces an equal and opposite act of
attention. Of course, we don't want this property!

2. Actually, this equation isn't perfectly identical to what appears in the transformer paper. That's because we chose to
put our word-embeddings in the columns of each matrix (as opposed to the rows, which is what the paper does) for ease
of visualization, and so had to add in a few transposes.

3. In talking with Llion Jones, I learned that the ûrst version of the transformer actually added the outputs of the heads
together instead of concatenating them. However, since then concatenation has become the de facto standard, so we will

Rohan Mehta

Rohan Mehta

Rohan Mehta

4/15/23, 12:28 PM The Attention Mechanism Demystiûed

localhost:9500/writings/blog_posts/attention.html 10/10

proceed with this choice.

© 2023 Rohan Mehta. All Rights Reserved. Built with Stasis.

Rohan Mehta

Rohan Mehta

Rohan Mehta

