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Most real-life situations are such that numerous factors, big or small, affect the final 

outcome. For example, when biologists study an ecosystem, there are many factors to consider 

from something as major as predator to prey ratio, to something seemingly as insignificant as types 

of microbes in the soil. It is extremely difficult for us to comprehend how all these variables 

simultaneously affect the final outcome, but data analysts have a trick up their sleeve. They use a 

dimension reduction technique called Principal Component Analysis (PCA) to identify a handful 

of the most critical factors that affect the outcome significantly. If you read about PCA, you will 

come across a lot of mathematical jargon like eigenvalue, eigenvector, standardization, variance, 

and more. In this article, we will extend our understanding on a more physical interpretation of 

how PCA reduces dimensionality, and we will define all vocabulary related to it. 

Let say we need to describe the shape of an airplane. It has three dimensions, so using some 

values of x, y, and z variables you can describe the shape completely. But here is the twist. Assume 

your perception is that of a two-dimensional being that can only observe two-dimensional 

projections of an object, or in other words, shadows. You cannot comprehend three-dimensional 

objects, just like it is difficult for us to perceive four or more dimensions physically. 

Here we have our “complex” three-dimensional object, an airplane. Let us say you are 

given a screen attached to a source of light where you can place the 3D object between them, flash 

the light, and observe the two-dimensional shadow. We have kept the distance between the light 

and the screen fixed and kept the object in the middle to prevent disproportional shadows from 

different orientations. In mathematical terms this is called standardization and it prevents 

misinterpretation due to a deformed shape of the shadow. Now shine the light from the front of the 

plane to project a shadow on the screen (Figure 1). 



FIGURE	 1:	LIGHT	 FROM	 FRONT	
	

	
From the shape of the shadow, would you be able to tell that this is an airplane? Probably not. As 

of now, it just looks like a ball with uneven protrusions. 

Now let us reorient the plane in such a way that you get a shadow sideways (Figure 2). 
 

FIGURE	 2:	LIGHT	 FROM	 SIDE	
	

	
This shadow helps a bit more, but it is hard to tell if it is a side view of a plane or the BFG’s shoe, 

right? 



Lastly, let us look at the last orientation where the light flashes from the top of the plane 

(Figure 3). 

FIGURE	 3:	LIGHT	 FROM	 TOP	
	

	
Now you can see where this is going. You can tell from this shadow that it most likely is an 

airplane. All these orientations prove to us that there will always be one screen-light plus irregular 

object setup that best describes the object in a reduced dimension. However, the same cannot be 

said for regular shapes like spheres. All screen-light orientations will result in a circular shadow. 

We will not be able to tell if it is a ball, cylinder, or cone if we look at only one shadow. 

But what is so special about the last shadow? You as a two-dimensional character could 

tell that the object was an airplane because the last shadow captures the most variation compared 

to the others. In other words, there were less features that were being hidden by overlapping parts. 

Now we are going to define some vocabulary. The eigenvectors are represented here as the 

axes of the shadow. The shadow itself is the projection of the data and the area of the projection is 

the measure of variation in the data. The eigenvalue is a measure of the span along the eigenvectors 

of the shadow. A higher variance means a higher eigenvalue and for our first principal component, 

we want an eigenvector with the highest eigenvalue. Since we have already crammed a lot of the 

information into the first principal component (as it has the highest eigenvalue), we can ignore the 

remaining principal components and plot our data, thereby achieving dimension reduction. If we 



wanted a 2D graph, we would take a second principal component along with the first and treat 

them as the x and y axes of a graph. 

PCA aims to reduce dimensionality of a higher dimension space by projecting it to a 

smaller dimension subspace. The eigenvectors discussed here provide the direction of the axes of 

these smaller dimensional subspaces, whereas the corresponding eigenvalues decide how much 

variation (information) that particular projection will capture. The projection involving 

eigenvectors with the highest eigenvalues, captures the most variation of the original space and 

therefore is the most informative one (like Figure 3). 

After using some matrix operations and other complex mathematical hocus pocus, PCA 

reduces the number of dimensions in the data so it is a simplified description of the shape without 

too much attention towards more finer details like, color, windows, etc. Whether it be dimensional 

reduction from 3 to 2 or from 100 to 2, the underlying mathematics will always be the same. 

Unfortunately based on our initial proposition, we as two-dimensional characters cannot 

conceptualize beyond two dimensions. We are happy in our two-dimensional universe of physical 

and intellectual existence but should not lose sight of the fact that more than two variables are 

simultaneously manifesting certain complex phenomenon. For our understanding we need to 

depend on the best possible description within the dimension we can conceive and ignore finer 

details to perceive the big picture. 


