
Counting

 
                      we’ll have enough other issues than the arithmetic. In fact, th e main difficulty we’ll face is keeping
 straight what exactly it is that we are trying to count!

not so easy to answer, at least not easy to answer correctly.  It ’s fine to use a calculator for help;  
In this class, we’ll ask How many ways are there to ... and discover these kinds of questions are

Fortunately, there is a straightforward and fundamental principle to guide us:

To count a set, build it.

In other words if you put a collection of things together, you can count them along the way. There
are two kinds of building steps to count:

Choices multiply. Cases add.

These principles are fundamental, and other tools will be built on top of them. Here are some
exercises to show how they apply. Let’s count!

1. At the Sooper Scooper Ice Cream Shoppe they will serve you a scoop of Strawberry, a scoop
of Chocolate and a scoop of Vanilla ice cream, but the scoops will be stacked up in a random
order. If you can guess the order ahead of time, you get the ice cream and cone for free!

List out the ways to stack the scoops and work out your chances!

2. At the Dippity Dip Ice Cream Store, they have the same three flavors. Their Random Special
Cone is two scoops chosen at random—they might be the same flavor or they might be
different. How many different special cones are there?
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3. Four friends are taking a selfie but can’t figure out how they should be arranged. They decide
to try every possibility! How many ways do they have to arrange themselves?

4. Uh oh, Here comes a fifth friend. How many ways can they be arranged?

5. Xorxes put its favorite space monster songs on shuffle: “Arrrrgghh,” “BBbbburble,” “Cdawjhk,”
and “Dance with me.” What are the chances that they are played in alphabetic order?

6. What if Xorxes adds its childhood favorite “Eh” to the shuffle? What is the probability the
five songs are played in alphabetical order?

7. If you select five different coins at random, what are the chances that they’ll be chosen in
order of size?

8. You may have any or all or none of four condiments, your choice of three kinds of cheese, your
choice of four kinds of bread, pickle or no pickle, lettuce or no lettuce. How many different
sandwiches are possible?

(How could you get a computer to list these options all out, mechanically?)

9. The fancy ice cream store Gelatomania offers three types of container (cone, cup, waffle cone),
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three chocolate dips for the container (none, dark, milk), eighty-seven gourmet flavors of ice
cream, and optional toppings (nuts, sprinkles, whipped cream and gold dust, each of which
may be chosen separately or together from the others), a choice of one of six flavors of chocolate
wafer to top it all off, and three kinds of bag to put the ice cream into.

How many options total are there for a family of four people to order ice cream, each with
their own idiosyncratic choice of container, dips, two flavors, optional toppings, flavor of wafer
and bag to put it all into?

10. There are three ways to walk from A’s house to B’s house, two ways from B’s house to C’s, and
seven ways from C’s directly back to A’s house. How many routes pass by A’s house, then B’s
house then C’s, finally returning back to A’s house?

11. How many of the integers from 1 to 999 have all of their digits odd? (What would be a
mechanical way to build up such an integer?)

12. How many of the integers from 1 to 999 have their digits all odd and different from one
another?

13. Thirty (different) books sit upon a bookshelf. How many ways are there to select and arrange
ten of them on another shelf? 1.09 1014

14. How many six letter strings can be formed from the letters A B C D E (possibly using a letter
more than once)? 15625
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15. How many ways are there to arrange the letters A B C D E (using each letter exactly once)?120

16. How many ways are there to arrange the letters A B C D E so that AE appears? 24

17. Some big numbers: The color of a pixel is specified by three bytes1, each with eight possible
values, for red, green and blue.

a) How many colors can a pixel be? 16777216

b) How many possible images2 are there on a 1280× 1024 pixel screen?

c) This is much greater than the number of subatomic particles in the universe (there are
only about 1090).
How large can a screen be and have fewer possible images than the number of subatomic
particles in the universe?

d) On the other hand, a subatomic particle confined to a handy cubic meter box might be
in any of, let’s just say, 1050 discernible states. How many subatomic particles do you
need in the box so that together they have more states than there are possible images
on a 1280× 1024 pixel screen?

e) About how many states may a three-dimensional universe be in, measuring the position
and velocity of each of 1080 particles, within a cube 1026 meters on each side, to within
10−33 meters of precision?

(How does this compare to famous numbers such as a googol, googolplex, Graham’s
number, or the first transfinite ordinal?)

1For each of which there are 28 possibilities.
2Though of course there are vastly fewer humanly distinguishable images! (A less well-defined number.)
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Binomials and Multinomials

Dividing a collection of objects into groups of specified sizes is one of the most important building
blocks in counting a set. We take this up more completely in Chapter 3 of the main notes. Here
are several exercises that show how this is applied.

1. Let’s meet each other!

If we all meet each other how many meetings will we have?

To answer this, we will try out some simpler questions first:

(a) If there are just two friends, there is one meeting.

(b) How many meetings are there for three friends?

(c) How many meetings for four friends?

How can we draw a picture of this?

(d) How many for five friends?

(e) Is there a pattern?

1. With a little trouble, we can count out, among all sequences of four Hs or Ts, exactly how
many there are with

• no Hs and
four Ts?

• one H and
three Ts?

• two Hs and
two Ts?

• three Hs and
one T?

• four Hs and
no Ts?

2. Repeat the same exercise for sequences of five coin tosses, six and beyond, and for that matter,
three tosses, two or one. What patterns do you find?

3. What is the likelihood that in a random sequence of twenty coin tosses, exactly ten will be
Hs?
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(This is the same as asking how many ways are there to order a sequence of ten Hs and ten
Ts.)

4. How many ways are there to split twenty kids into two groups of ten kids each?

5. How many different orders are there to list out the letters A S T O U N D?

6. How many ways are there to match seven kids with seven different adventure opportunities?

7. How many different orders are there to list out the letters A B R A C A D A B R A?

8. How many ways are there for a team of eleven kids divide up into different roles: five A’s, two
B’s and R’s, one D and one C?
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9. Fifteen pixels are each colored, at random with equal likelihood, one of red, green or blue.
What is the probability that exactly five pixels are colored red, five are green, and five blue?

10. Fifteen kids are evenly sorted into three teams, a red team, a green team and a blue team.
How many arrangements are possible?
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Are these games fair?

Here are some games. To understand whether or not they are fair, we need to count out the
possibilities within the game.

Game 1
A fair five sided spinner is spun three times.
Want to bet even money that at least once it will come up 1?

Game 2
Let’s flip four fair coins. For even money, want to bet there are exactly two H’s and two T’s? Or
bet that there won’t be?

Game 3
Roll three dice. If one 6 appears, you get a dollar. If two 6’s appear, you get $2. If three 6’s appear,
you get three dollars! If no 6 appears, you have to pay $1.

The probability that each die shows a 6 is 1
6
, and there are three dice. Half the time, three-sixths,

at least one 6 will show, for at least $1, so on average you’re sure to make money!! Right?

Game 4
Let’s put up a big prize. What about if you pay $1 and roll three dice. If one 6 appears you get
your dollar back. If two 6’s appear, you get $5 back; if three 6’s appear, you get a crisp $50 dollar
bill! Sound good? Let’s play!

Are these games fair?
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Partitions

“Partitions” are a classical counting challenge. How many ways are there to divide up a given
counting number into other counting numbers? Equivalently, how many ways are there to divide
up a heap of identical objects?

For example, there are eleven partitions of 6:

• 6

• 5 + 1

• 4 + 2

• 4 + 1 + 1

• 3 + 3

• 3 + 2 + 1

• 3 + 1 + 1 + 1

• 2 + 2 + 2

• 2 + 2 + 1 + 1

• 2 + 1 + 1 + 1 + 1

• 1 + 1 + 1 + 1 + 1 + 1

In some of these, all of the summands are odd (these are the “odd partitions”). In some of these,
each summand is unique (these are the “unique partitions”). How many of each kind of partition
are there?

How many partitions of 7 are there? List them out! How many odd partitions are there and how
many unique ones. Do you see any pattern?

How many partitions of 12 are there? Can you find a formula?

What’s going on?
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Counting with symmetry

How many ways are there to color parts of a thing, up to its symmetry? For example,

Below are more examples for you to play with. We will learn a clever theory that covers these and
beyond.

1. How many ways are there to color:

(a) the vertices of a rectangle with two W, two G. 3

(b) the vertices of a square with one R, two G, one B. 2

(c) the vertices of a regular pentagon with two R, two G, one B. 4

(d) the eight vertices of a cube with four W, four G. 7

(e) the eight vertices of a cube with two W, six G. 3

(f) the six faces of a cube with any three R, three Y. 2

(g) the twelve edges of a cube with four each of three colors. 1479

2. In these problems, any number of each kind of color can be used – including none! For
example, up to symmetry, there are six ways to color the corners of a square with two colors,
say R and W: all R, all W; one R three W and vice versa; and there are two different ways
to color with two R and two W. These numbers are larger than the ones from the problems
above, but we’ll learn a quicker method to find them. How many ways are there to color:

(a) the vertices of an equilateral triangle with any of three colors? 10

(b) the vertices of a square with any of three colors? 21

(c) the vertices of a regular pentagon with any of three colors? 39

(d) the vertices of a cube with any of three colors? 333

(e) the faces of a cube with any of three colors? 57

(f) the edges of a cube with any of three colors? 22815
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Expanding strings

Here’s another strange counting example. Consider binary strings made in the following way:

Starting with 1, successively replace each 1 with 10 and each 0 with 1. Let’s see what we get:

1→ 10→ 101→ 10110→ 10110101→ 1011010110110→ . . .

How many 1’s and 0’s are there at each step?

How fast do these strings grow?

About how many 1’s and 0’s will there be after 20 steps?
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Counting with restrictions

Suppose we are pairing up items in {A,B,C,D,E} to items in {1, 2, 3, 4, 5}, but subject to some
weird complicated conditions. To represent this diagramatically:

We can only match
A to 1 or 2
B to 2, 3 or 4
C to 1, 2, or 4
D to 1, 2, 4, or 5
E to 1, 2, 4, or 5

we might draw

1 2 3 4 5

a

b

c

d

e

These are perfectly reasonable questions:

• Can we match each of A,B,C,D and E with 1, 2, 3, 4, and 5, satisfying these conditions? In
other words, can we fit 5 rooks into this board?

• If we can, in how many ways may we do this?

• Or to change it up: How many ways may we fit 3 rooks in, with none on the same row or
column as any other?

• How can we systemize this?

Another Example

Three inputs XY Z must link to one of four outputs STUV . No output may be linked to from more
than one input. X may link to STU , Y to TUV , and Z to SV . How many ways may two of the
three inputs be linked?

1. Draw a board representing this problem.

Another Example

Six teams A,B,C,D,E, F are available to be paired with four clients, W,X, Y, Z (Two teams will
not be needed.) Teams A,B,C are experts on the needs of W,X, Y . Teams D,E work well with
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Counting

These notes were originally prepared for a university-level course on combinatorics, and include
many examples to try out and learn from. Play around and experiment!

The answers are listed in gray in the margin to check from.

1 How to get started

1. Decks, cards, die rolls and strings are standard combinatorial gadgets. Let’s count them!

Some of these are trickier than others, but just a few ideas work for them all. Look these
over, try to answer them as best you can, and think about:

What principles are we using?

(a) There are 52 different cards in a standard deck.
How many ways are there to put four cards in a row? 6497400

(b) How many ways are there to select four cards together? 270725

(c) How many ways are there to select four cards together and then put them into order?6497400

(d) How many six letter strings may be made of the eight letters A, B, C, D, E, F, G, H,
if letters may be used more than once? 262144

(e) How many six letter strings may be made of the eight letters A, B, C, D, E, F, G, H,
if letters may be used at most once? 20160

(f) How many ways can you select six out of the eight letters A, B, C, D, E, F, G, H? 28

(g) How many binary strings of length eight have exactly six 0’s and two 1’s? 28

(h) How many binary strings of length eight have at least six 0’s? 37

(i) Eight fair six-sided dice are rolled together.
(Or equivalenty, one die is rolled eight times in a row.)

What is the probability that all of the rolls show 1 or 2? 1/6561
∼ 0.0152%

What is the probability that exactly six of the rolls show 1 or 2?
112/6561

∼ 1.71%What is the probability that at least six of the rolls show 1 or 2?
43/2187

∼ 1.97%

Before we even get started counting anything, are you sure you know what you’re counting?

We will find these principles useful again and again:
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Exclusive cases are summed. Sequential steps are multiplied.

In a step, if we are choosing one thing out of a pool of n, there are n choices. But more generally,
we might have to select k things out of a pool of n, all together, if they are the same in the data.
To count these, we use combinations, discussed in Section 3.

From a pool of n distinct objects, the number of ways to select k of them is “n choose k”,
denoted

(
n
k

)
:= (n · (n− 1) . . . (n− k + 1)) / k!

From just these ideas, we will obtain some simple formulas, then build those up.

2. Go back through Exercises 1 and 2, and for each problem, explicitly describe an algorithm
that fleshes out the data, and how the number of choices is calculated.

In the next few sections, we’ll flesh out these principles, that will be fundamental to the subject
of Combinatorics. Later in the semester, we will develop this into more powerful tools: generating
functions, the Principle of Inclusion/Exclusion, and Polyá enumeration.

Get some cards, dice, letters, and work through exercises 1, 2 and 3. There’s more on the way!

Try out this method on some more subtle problems. Do you get the right answer? Does your
algorithm count fairly?

a) Six different books and nine different magazines are available. How many ways can five
publications be selected and stacked up if a book must be on top, and a magazine on the
bottom? 92664

b) What is the probability that, when five cards from a standard deck are dealt, that the hand
has two pairs? 123552/2598960

∼ 4.75%

c) Six different books and nine different magazines are available. How many ways can five
publications be selected and stacked up if a book must be on top, and at least one magazine
must be in the stack? 143424
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d) From a group of three red and four black playing cards, how many ways are there to select
four of these so that there is at least one of each color? 34

2 How to count:

2.1 Independent Steps

Each of the following can be counted by multiplying the numbers of cases in a series of independent
steps.

1. There are three roads from A to B, two from B to C, and seven from C to A.
How many routes are there from A to B to C to A? 42

2. You may have any or all or none of four condiments, your choice of three kinds of cheese, your
choice of four kinds of bread, pickle or no pickle, lettuce or no lettuce. How many different
sandwiches are possible? 768

3. How many possible cars are possible if there are three choices for steering wheel cover, nine
choices for...etc...

4. How many routing codes of the form ##X#####-XX are possible, each # one of ten digits 0

through 9, and each X one of the twenty-six capital roman letters A through Z. 17576000000

5. How many six letter strings can be formed from the letters A B C D E (possibly using a letter
more than once)? 15625

6. How many ways are there to arrange the letters A B C D E (using each letter exactly once)?120

7. How many ways are there to arrange the letters A B C D E so that AE appears? 24

8. How many ways are there to arrange beads with the letters A B C D E on a necklace? 24

9. How many seven digit passcodes are there using the ten digits 0 - 9? 10000000

10. How many seven digit passcodes are there using the ten digits 0 - 9, if no digit may be
repeated? 604800

11. Thirty (different) books sit upon a bookshelf. How many ways are there to select and arrange
ten of them on another shelf? 1.09 1014

12. Nine students are in the Combinatorics Club. How many ways are there to select a president,
vice-president and a secretary? 504
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13. In the last three problems, we sought the number of permutations of 7 out of 10 objects, of
10 out of 30 objects, and of 3 out of 9 objects.

Permutations are counted in consecutive steps of an algorithm: select one of n, then one of
(n− 1), etc, until there are (n− k + 1) choices on the kth and final step.

In general how many permutations — ways to select and distinguish — k out of n objects,
are possible?

14. Five CS students and four math students are in the Combinatorics Club. How many ways
are there to select a president, a vice-president and a secretary? 504

15. How many ways are there to select a CS student for president, a math student for vice-
president and either for secretary? 140

16. How many ways are there to select a president, vice-president and secretary if at least one
position must be held by a math student and at least one position must be held by a CS
student?3 420, not 840.

We will soon call
this “The Standard
Error!”.17. The color of a pixel is specified by three bytes4, for red, green and blue.

a) How many colors can a pixel be? 16777216

b) How many possible images5 are there on a 1280× 1024 pixel screen?

c) This is much greater than the number of subatomic particles in the universe (there are
only about 1090).
How large can a screen be and have fewer possible images than the number of subatomic
particles in the universe?

d) On the other hand, a subatomic particle confined to a handy cubic meter box might be
in any of, let’s just say, 1050 discernible states. How many subatomic particles do you
need in the box so that together they have more states than there are possible images
on a 1280× 1024 pixel screen?

3Does your answer agree with your answer to this question in Section 2.3?
4For each of which there are 28 possibilities.
5Though of course there are vastly fewer humanly distinguishable images! (A less well-defined number.)
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2.2 Combinations

“Combinations” — which we count with “binomial coefficients” — are so useful that we’ll do a few
exercises now and defer more complete discussion to Section 3.

When counting, we count choices at each step of an algorithm to populate a data structure, mul-
tiplying from step to step, and (as we’ll see in Section 2.3) adding and subtracting our counts
as we add or subtract cases. At a step, we can specify one choice out of a pool of n differ-
ent possibilities (in n ways), but it is also helpful to be able to choose a group of k choices, in(
n

k

)
:= (n · (n− 1) . . . (n− k + 1))/k!, “n choose k” ways.

In this section, we will just begin to use them, but they will prove so helpful they deserve a name:
these are binomial coefficients.

In Section 3 we will describe why this is the correct number of ways to choose k out of a pool of n.

1. How many ways are there to select four students out of a group of eleven?

How many ways are there to select seven students out of a group of eleven?

How many ways are there to divide a group of eleven students into committee A with four
students, and committee B with seven? 330

2. How many strings can be formed from four A’s and seven B’s?

We need more of these, but my imagination is lacking. So as a class, let’s make up a few more:

3. How many ways are there to take 11 distinct objects and put 4 of them into bin A and
seven into bin B?

4. How many 10-bit binary strings are there with exactly one 0? two 0’s? Three? Four? and on
up to... Ten? Make a chart. Check that the total is 210.
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2.3 Cases

Many times it is easier to break a count into cases. If the cases do not overlap, to get the total
number, we simply sum them up. If the cases do overlap, well, then it takes some more care. And
of course we have to avoid The Standard Error, described in Section 2.3.1.

1. How many possible license plates are there of the form

(a) ### XXX, where # is a digit 0 - 9 and each X is a letter A - Z. 17576000

(b) ### XXX, or XXX ###, or X#X#X# 52728000

(c) XXX ###, where none of 164 forbidden three letter strings may appear. 17412000

2.3.1 The Standard Error

2. From two red cards and three black cards, how many ways are there to select a group of four,
so that there is at least one of each color? Get out some real playing cards and try this!

You should be able to find the answer by hand. 5

But what is wrong with this algorithm: Select one red card (in one of 2 ways). Select one
black card (in one of 3 ways). From the remaining three cards, select two, in

(
3
2

)
:= 3·2/ 2! = 3

ways, for a total of 2 · 3 · 3 = 18 ways. 18

What is the correct way to tackle this problem?

In fact this comes up so frequently that we refer to The Standard Error, when cases are counted in
this particular incorrect way, by mistakingly promoting some object or datum to a special role. In
the rest of Section 2.3 and beyond you will see many examples of this.

2.3.2 Accounting for overlapping conditions

3. (a) How many ways are there to arrange the letters A B C D E so that A appears next to E?48

(b) How many ways are there to arrange the letters A B C D E so that AE or DB or both
appear? 42
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(c) How many ways are there to arrange the letters A B C D E so that neither AE nor DB

appear? 78

6

4. Six cards are dealt from a standard deck. How many ways are there to do this

a) if there are no hearts? 3262623

b) if there are no hearts and no spades? 230230

c) if there are no hearts or no spades? (so one or the other or neither but not both). 6295016

d) if there are no 7’s and no 9’s? 7059052

e) if there are no 7’s or no 9’s? 17483972

5. Three fair 10-sided dice are rolled.

a) What is the probability that there are all even numbered values? 1/8 ∼ 12.5%

b) What is the probability that there are at least two numbered values? 99/100 ∼ 99%

c) What is the probability that all of the values are 5 or less? 1/8 ∼ 12.5%

d) What is the probability that all of the values are even and 5 or less? 1/125 ∼ 0.8%

e) What is the probability that all of the values are even or all of the values are 5 or less?121/500 ∼ 24.2%

6. There are five different magazines and six different books.

(a) How many ways are there to form a stack of four publications if there must be a magazine
in the stack? 7560

(b) How many ways are there to select four publications to give away if one of these must
be a magazine? 315

(c) How many ways are there to stack six publications if there must be a book on top, a
magazine on the bottom, and at least one magazine and one book in the middle. 86400

2.3.3 Exclusive Cases

7. Five CS students and four math students are in the Combinatorics Club. How many ways
are there to select a president, a vice-president and a secretary

(a) if the president must be a math student; 224

6Problems like these will be a snap, using P.I.E., but for now, try these out directly:

• How many strings can be formed from the thirteen letters COMBINATORICS?

• So that the substring OO appears? So that the substrings OO CC and II appear?

• So that none of the substrings OO, CC or II appear?

• So that exactly one of the substrings OO, CC or II appear?

• So that exactly two of the substrings OO, CC or II appear?
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(b) if exactly one officer is a math student and two are CS students; 240

(c) if exactly two officers are math students and one is a CS student; 180

(d) if at least one officer is a math student and at least one is a CS student.7 420

(e) if at least one officer is a math student? 444

(f) Here is an instance of The Standard Error. Why does this incorrectly count the number
of ways if at least one officer is a math student?

Choose the position for a math student (3 ways) and a student to fill it (4 ways). Then fill
the first remaining position with any remaining student (8 ways) and the next remaining
position with any student remaining after that (7 ways), or 3 · 4 · 8 · 7 = 672 ways.

(g) How many ways are there to line up six of the students, if there must be a math student
on the left end, a CS student on the right end, and at least one of each in the middle
positions?

8. There are five math students and six CS students in the Combinatorics Club. How many
ways are there to select a committee of four students, if at least one committee member must
be a math student, and at least one must be a CS student?

Why is this instance of The Standard Error incorrect: Choose a math student (in any of
(
6
1

)
ways), to choose a CS student (in any of

(
5
1

)
ways), and then choose two more students from

the remaining nine (in any of
(
5+4
2

)
ways), for a total of

(
6
1

)(
5
1

)(
9
2

)
.

Instead we may sort out the collection of ways of choosing four students from eleven into
cases: how many CS students and how many math students were chosen. These cases are
easy to count, and can be summed to get the number we want.

How many ways are there to choose:

(a) four students out of eleven? 330

(b) four math students and no CS students? 5

(c) three math students and one CS students? 60

(d) two math students and two CS students? 150

(e) one math students and three CS students? 100

(f) no math students and four CS students? 15

(g) Check that the first of those equals the total of the rest.

(h) What is the number of ways to choose four students, at least one CS major and at least
math major? 310

9. How many 10-bit binary strings have at least two 0’s and two 1’s? 1002

10. Ten fair six-sided dice are rolled. What is the probability that there are no more than two
6’s? ∼ 77.53%

11. A row of six cards is dealt from a standard 52-card deck. What is the probability that four
or more of the cards are red? ∼ 33.3976%

7Does your answer agree with your answer to this question in the previous section?
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12. How many strings using the letters a a b b c are possible if

a) aa must not appear. 18

b) ac and ca must not appear. 9

c) How many n-letter strings using a, b, c are possible if ac and ca must not appear.
(We will have a good approach to this soon, but try it out now.)

In Section 4 we will take up P.I.E., the Principle of Inclusion-Exclusion, which will help us count
up more complicated arrangements of conditions.

2.4 More elaborate counts

The things we are counting are specified by their data, and constraints on this data. We multiply
when we construct our data in a series of independent steps. We add when our data is in mutually
exclusive cases. Now we combine these in more complex ways. The key is:

What is a data structure encoding what we wish to count?

1. The fifty-two standard playing cards in four suits ♠,♡,♣,♢ and thirteen denominations A 2

3 4 5 6 7 8 9 10 J Q K. A “hand” is an unordered selection of five of these fifty-two cards.

a) How many hands are possible? (What general size of number is this?) 2598960

b) How many flushes (all the same suit)? (What is the probability a random hand is a
flush?) 5148,∼ .198%

c) How many straights? if A’s can be either

low or high,

10240d) How many hands with five different denominations (no pair of cards have the same
denomination)? 1317888

e) How many worthless hands are there? Let’s not worry about straights and ask:
How many hands have all unmatched ranks and at least two suits? 1312740

f) How many hands with a pair and three unmatched cards? 1098240

g) How many hands with two pair and one unmatched card? 123552

h) Three of a kind? Full house? Four of a kind? Five? 8

i) How many hands of thirteen cards have two pair, two three-of-a-kind and three un-
matched cards? ∼ 1.328 1011

8For some fun, include a pair of jokers in the enumeration!
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2. Standard dice show 1 2 3 4 5 6. Five dice9 are thrown.

a) How many throws are possible? 7776

b) How many throws with all five dice different (no pair of dice has the same denomination)?720

c) How many throws with a pair and three unmatched dice? 3600

d) How many throws with two pair and one unmatched die? 1800

e) How many throws of thirteen eight-sided dice have two pair, two three-of-a-kind and
three unmatched rolls? 72648576000

3. Consider strings of length 20 of 0’s, 1’s, 2’s and 3’s.

a) How many consist of exactly five 0’s, six 1’s, seven 2’s and the rest 3’s? 2793510720

b) How many consist of six 1’s, seven 2’s and at least two 0’s?

c) How many consist of at least three 1’s, at most seven 2’s and at least two 0’s?

d) How many strings of length 20 have “weight” — the sum of digits — at least 6?

9These are physical dice, so a 1 on the first die and 2 on the second isn’t the same thing at all as a 2 on the first
and a 1 on the second.
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3 Binomial and Multinomial Coefficients

The numbers in this table appear again and again, remarkably often. They simply record the
number of different direct routes from the top of the table to their own position:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

3

6

10

15

21

28

36

45

55

66

78

91

105

120

136

153

171

190

1

4

10

20

35

56

84

120

165

220

286

364

455

560

680

816

969

1140

1

5

15

35

70

126

210

330

495

715

1001

1365

1820

2380

3060

3876

4845

1

6

21

56

126

252

462

792

1287

2002

3003

4368

6188

8568

11628

15504

1

7

28

84

210

462

924

1716

3003

5005

8008

12376

18564

27132

38760

1

8

36

120

330

792

1716

3432

6435

11440

19448

31824

50388

77520

1

9

45

165

495

1287

3003

6435

12870

24310

43758

75582

125970

1

10

55

220

715

2002

5005

11440

24310

48620

92378

167960

1

11

66

286

1001

3003

8008

19448

43758

92378

184756

1

12

78

364

1365

4368

12376

31824

75582

167960

1

13

91

455

1820

6188

18564

50388

125970

1

14

105

560

2380

8568

27132

77520

1

15

120

680

3060

11628

38760

1

16

136

816

3876

15504

1

17

153

969

4845

1

18

171

1140

1

19

190

1

20 1
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3.1 Binomial coefficients

For any positive integer k, we define k! = k · (k − 1) · · · 2 · 1, or more succinctly k! :=
k∏

j=1

j.

It turns out to be helpful to define 0! := 1. One way to see that this makes sense is that 2! = 3!/3
and 1! = 2!/2. Consequently, 0! should be 1!/1 = 1 — though this breaks down for (−1)! etc. 10

If k is not a non-negative integer, we define the “binomial coefficient”(
n

k

)
:= 0

Otherwise, for any non-negative integer k and any real number n, we define(
n

k

)
:=

(n)(n− 1) · · · (n− k + 1)

k!

For reasons we’ll soon discuss, we pronounce this “n choose k”.

So for example

(
5

3

)
=

5 · 4 · 3
3 · 2 · 1

= 10. Since the 3’s cancel, note that

(
5

3

)
=

(
5

2

)
, and in general,

For non-negative integers n, j, k with j + k = n, we have

(
n

j

)
=

(
n

k

)
=

n!

j!k!
.

But we have defined the binomials even when n is not a non-negative integer! For example

(
1/2

3

)
=

(1/2)(−1/2)(−3/2)
3!

=
3

16
, and(

−3
4

)
=

(−3) · (−4) · (−5) · (−6)
4!

= (−1)46 · 5 · 4 · 3
4!

= (−1)4
(
3 + 4− 1

4

)
= (−1)4

(
3 + 4− 1

3− 1

)
= 15

In general, check that

if n is a positive integer (and −n is a negative integer) then

(
−n
k

)
= (−1)k

(
n+ k − 1

n− 1

)
.

10The “gamma function”, Γ(x) :=
∫∞
0

tx−1e−t dt fills in factorials for all real numbers except the negative integers:

By the method of integration by parts, one proves that for all x, Γ(x + 1) = xΓ(x). Since Γ(1) =
∫∞
0

e−t = 1, we
have by induction that Γ(n+ 1) = n! for all non-negative integers n. The indefinite integral defining Γ(x) does not
converge for negative values of x.
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Because 0! = 1, for any non-negative integer n,

(
n

0

)
=

n!

n!0!
= 1. We simply extend this definition

to all real numbers n and define

(
n

0

)
:= 1

For non-negative integers k, n, with k > n, we have

(
n

k

)
= 0 because

(
n

k

)
=

n · · · 0 · · ·
k!

.

Quick check. Evaluate:

•
(
15
0

)
•
(
12
1

)
•
(
10
3

)
•
(
6
4

)
•
(
10
7

)
•
(−3

3

)
•
(
2
4

)
•
(−12

1

)
•
(−12

0

)
•
(
7
10

)
•
(

3
−3

)
•
(

4
−2

)
•
(
2/3
2

)
•
(
π
4

)
•
(
0
0

)

It is worth proving that for k ̸= 0,

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. If k is not a positive integer (and

k ̸= 0), then this is because 0 = 0+ 0. Otherwise, if k is a positive integer (and (k− 1) is therefore
non-negative) we apply our definition and have

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1) · · · ((n− 1)− k + 1)

k!
+

(n− 1) · · · ((n− 1)− (k − 1) + 1)

(k − 1)!

=
(n− 1) · · · (n− k)

k!
+

(n− 1) · · · (n− k + 1)

(k − 1)!

= (n− k)

(
(n− 1) · · · (n− k + 1)

k!

)
+ (k)

(
(n− 1) · · · (n− k + 1)

k!

)

= n

(
(n− 1) · · · (n− k + 1)

k!

)

=
n · · · (n− k + 1)

k!
=

(
n

k

)

13



This gives us the famous triangle in which each entry is the sum of the two above, known to
Pascal (1623-1662), Yang Hui (1238-1298), Jia Xian (1010-1070) and Al-Karaji

(c. 953 – c. 1029)

(
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
etc.

or

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

etc.

Notice that all the missing entries are for k < 0 or k > n— we may fill in all the missing entries
with 0’s and the table will still be correct!
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What the binomial coefficients are counting

For positive integers n and any integer k,

(
n

k

)
counts the number of ways to choose k objects

from a pool of n objects.

For example

(
6

4

)
counts the fifteen ways to pick four out of the six letters a,b, c, d, e and f. (Try

listing these out. Notice that we don’t care in which order the letters are selected and the choice
acdf, for example, is just the same as dafc etc)

In the special case that k = 0, recall
(
n
0

)
= 1. Since there is exactly one way to choose no objects

from a pool of n objects — do nothing!—
(
n
0

)
counts this correctly in this case! And when k < 0

or k > n there are no ways to choose k out of n objects, and indeed here,
(
n
k

)
= 0.

For positive k let’s prove
(
n
k

)
counts the number of ways to choose k out of n objects, in two ways:

First, we’ll prove this by a direct counting argument: If we wish to arrange k out of n objects in
a line, there are n choices for the first in line. But there are now (n− 1) choices for the second in
line, leaving (n − 2) for the third, etc, until there remain (n − k + 1) for the kth in line. So there
are n · · · (n − k + 1) ways to arrange k of n objects in a line. But this overcounts each of what
we wanted to count many times. Each choice of k objects could have been arranged in a line in
k! ways, and so was counted k! times. So the number of choices of k objects from a pool of n is
n · · · (n− k + 1)

k!
=

(
n

k

)
.

Secondly, let’s prove this by induction as well. For n = 1, there is 1 =
(
1
0

)
way not to choose a

single object and 1 =
(
1
1

)
way to choose it.

So assume that for a given n− 1, for any j,
(
n−1
j

)
correctly counts the number of ways to choose j

out of n−1 objects. How many ways are there to choose k out of n objects? Of all possible choices,
there are two possibilities: Either the nth object is chosen, or not. If the nth object is included in
the choice, we must have chosen (k − 1) objects from a pool of (n − 1). If the nth object is not
included, we must have chosen k objects from a pool of n. In short the number of ways to choose

k out of n objects is

(
n− 1

k − 1

)
+

(
n− 1

k

)
, which we have already proven equal to

(
n

k

)
.
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Equivalently

For non-negative integers j, k and arbitrary symbols A, B,

(
j + k

j

)
=

(
j + k

k

)
counts the

number of strings with j A’s and k B’s.

This is simply because we must choose j out of the j + k positions in the string where the A’s will
appear, or equivalently, the k positions where the B’s appear.

Equivalently

For non-negative integers j, k

(
j + k

j

)
=

(
j + k

k

)
counts the number of ways to partition i+ j

identical objects into two distinct categories, the first with i objects and the second with j
objects.

Binomial coefficients in the binomial theorem

When we multiply (a+ b)(y+ z) = ay+ az+ by+ bz, our terms correspond to the ways of choosing
one of a and b from the first multiplicand, multiplied by one of y and z from the second (A.k.a.
“FOIL”). This generalizes fully: when we multiply out any product of sums, our terms will exactly
correspond to the ways of choosing one summand from each of the multiplicands.

In particular, how do we multiply out (a+ b)(a+ b)(a+ b)?

There are eight terms, corresponding to the two ways to choose an a or b from the first (a + b),
times the two ways to choose an a or b from the third (a+ b).

(a+ b)(a+ b)(a+ b) = aaa+ aab+ aba+ abb+ baa+ bab+ bba+ bbb

This simplifies to
(a+ b)(a+ b)(a+ b) = 1a3 + 3a2b+ 3ab2 + 1b3

Where did the coefficients come from? The coefficient 3 of a2b arose because 3a2b = aab+aba+ baa
— there are three different ways to string together two a’s and one b.
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In general, for non-negative integers j, k, n with j + k = n, the coefficient of ajbk in (a+ b)n will be

exactly the number of ways to string together j a’s and k b’s– that is, exactly

(
n

j

)
=

(
n

k

)
and we

have the binomial theorem in this case: 11

For counting number n,

(a+ b)n =

(
n

0

)
a0bn +

(
n

1

)
a1bn−1 + . . .+

(
n

1

)
an−1b1 +

(
n

0

)
anb0

In other words, the coefficients are the corresponding row of Pascal’s triangle.

In fact, remembering that

(
n

k

)
= 0 for counting numbers n, k with n < k, we actually have that

(a+ b)n =
∞∑
k=0

(
n

k

)
akbn−k

But12 this actually holds for all real numbers n! To be more precise,

For all real numbers n,

(1 + x)n =

(
n

0

)
x0 +

(
n

1

)
x1 + · · · =

∞∑
k=0

(
n

k

)
xk

11Here is a more rigorous proof by induction on n: For n = 1, (a+ b)1 =
(
1
0

)
a0b1 +

(
1
1

)
a1b0. Suppose the theorem

holds for a given n− 1. Then (a+ b)n = (a+ b)n−1(a+ b) = a(a+ b)n−1 + b(a+ b)n−1. On the left hand side, the
coefficient of ajbk, with j + k = n, is the sum of the coefficient of aj−1bk in (a+ b)n−1 and the coefficient of ajbk−1

in (a+ b)n−1, in other words,
(
n−1
j−1

)
+
(
n−1
k

)
=

(
n−1
k−1

)
+
(
n−1
k

)
which we have seen equals

(
n
k

)
.

12The general statement is a consequence of Taylor’s Theorem, for a function f(x), if at some a,
f(a), f ′(a), f ′′(a), ..., f (k)(a), .... are all defined then in a neighborhood of a, f(x) =

∑∞
k=0 f

(k)(a)(x− a)k/k!
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In other words,

The coefficients of each xk in (1 + x)n are

(
n

k

)
. The function (1 + x)n

is the generating function for the sequence
(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . .

Exercises

1. Let’s derive some binomial coefficients from scratch:

(a) How many ways are there to arrange the letters A B C D E?

(b) How many ways are there to arrange the (all different) letters A A A e E?

(c) Of these, how many were of the form E A E A A? How many of the form A A E A E?
etc?

(d) In general, for any arrangement of the letters A A A E E

how many corresponding arrangements are there of the letters A A A e E ?

(e) How many arrangements are there of the letters A A A E E ?

(f) In general, how many arrangements are there of i A’s and j B’s?

2. For any n = i+ j, for n, i, j ≥ 0, why are the following all equivalent?

• The number of ways to choose, out of n things, i of them;

• The number of ways to choose, out of n things, n− i = j of them;

• The number of ways to arrange i A’s and j B’s;

• The number of ways to distribute n objects, i into the A pile and n− i in the B pile;

• (less obviously) the coefficient of aibj in (a+ b)n;

• (less obviously) in Pascal’s triangle, the ith entry in the nth row (counting both from 0)

•
(
n

i

)
:= n · (n− 1) · · · · · (n− i+ 1) / i!, with i multiplicands in both the numerator and

denominator.

•
(
n

j

)
3. (a) How many ways are there to select four students out of a group of eleven? 330

How many ways are there to select seven students out of a group of eleven? 330

(b) How many strings can be formed from four A’s and seven B’s? 330
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(c) How many ways are there to take 11 files and put 4 of them into trashcan A and seven
into trashcan B? 330

(d) Make up some of your own!

4. Prove that for a fixed counting number n, 2n =
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
.

(You can also prove this with a simple counting argument.)

5. Similarly prove that
(
n
0

)
−

(
n
1

)
+
(
n
2

)
+ · · ·+ (−1)n−1

(
n

n−1

)
+ (−1)n

(
n
n

)
= 0.

This is trivial for odd n (why) but kind of amazing for even n.

Coefficients

Let’s calculate actual coefficients:
35

-560
6. What are the coefficients of a4b3 in

• a4b3 in (a+ b)7 • a4b3 in (2a− b)7 • aibj in (2a − b)7, for arbitrary i, j ∈ Z?

Often we will write [xn]f(x) to mean the coefficient of xn in the expansion of f(x). For example,
the binomial theorem can be stated as:

[xn](1 + x)k =

(
k

n

)
(Are k and n correct? Check: What is [x3](1 + x)6?)

We have some rules (which are obvious if you think about them) such as

• [xn](f + g) = ([xn]f) + ([xn]g) • [xn](cf + g) = c[xn]f

for functions f, g and constant c. There’s another less obvious but very helpful rule. Why is this
true?

•[xn]xf = [xn−1]f

So for example, the coefficient of x4 in x(1− 2x)10 is:

[x4]x(1− 2x)10 = [x3](1− 2x)10 = (−2)3
(
10

3

)

7. What are the coefficients of x5 in 312741

13608

−1701/256

∼ 1.8904

40095

40501
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• (1− 3x)9

• 1/(1− 3x)4

• (1− 3x)1/2

• (1− 3x)π

• 1/(2 + x)4

• 1/(2 + 3x)5

• x(1 + 2x)5

• x/(1− 3x)9

• (x+ x3 + x5)/(1− 3x)9

3.2 Multinomial coefficients

We will also need multinomials:

1. (a) How many ways are there to arrange the eleven letters A to K?13

(b) How many ways are there to arrange the (all different) letters M I S s I s S i ρ P I

(c) Of these, how many were of the form M I S S I S S I P P I?

(d) In general, for any arrangement of one M, four I’s, four S’s and two P’s, how many
arrangements are there of the eleven letters M, I I i I, S s s S, ρ P ?

(e) How many arrangements are there of the letters one M, four I’s, four S’s and two P’s ?

(f) In general, how many arrangements are there of m M’s, i I’s, s S’s and p P’s

(g) For n = m+ i+ s+ p, each m, i, s, p ≥ 0, what is the coefficient of MmIiSsPp

in (M+ I+ S+ P)n?

Multinomial coefficients are useful for counting the number of ways to distribute distinct objects
into distinct bins:

2. Sixteen students will be assigned to the Red, Green, Blue and Yellow teams, four to each
team. In how many ways may this be done? 63063000

3. Twelve different books will be distributed equally to four children.
How many ways may this be done? 369600

4. Fifteen job requests are equally distributed to five distinct work units.
How many ways may this be done? 168168000

5. Six managers read 24 complaints.

a) How many ways can the complaints be distributed so each manager reads four? ∼ 3.247 1015

b) How many ways can the complaints be distributed so that managers A and B read six
complaints each and managers C D E F each read three? ∼ 9.235 1014
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c) How many ways can the complaints be distributed so that two managers each read six
and four managers each read three? ∼ 1.385 1016

6. Six packets are each randomly assigned to one of three routers. What is the probability that
each router has been assigned exactly two packets? 10/81

7. We have seen that the number of strings of a A’s and b B’s is

(
a+ b

a

)
=

(
a+ b

b

)
=

(a+ b)!

a! b!
.

a) Why is the number of strings of a A’s, b B’s, and c C’s exactly the “multinomial coefficient”
(a+ b+ c)!

a! b! c!
?

b) What is the number of strings of a A’s, . . . k K’s?

c) How many ways are there to arrange the letters A B R A C A D A B R A? 83160

d) What is the coefficient of A5B2C1D1R2 in the expansion of (A+ B+ C+ D+ R)11?
(The number of arrangements of ABRACADABRA). 83160

e) What is the coefficient of A5B2C1D1R2 in the expansion of (A− B+ C− D+ 2R)11? -332640

f) What is the coefficient of A5B2C1D1R2 in the expansion of (A− 2B+ 3C− 4D+ 5R)11? -99792000

g) State and prove a theorem about the coefficients in the expansion of (A+ B+ · · ·+ K)n.

h) Prove that kn =
∑

n=
∑k ci

n!

c1! c2! . . . ck!

8. (a) In how many ways can 15 players form into Red, Green and Blue teams, of 5 players each?

(b) In how many ways can 15 players form into three teams, of 5 players each?

3.3 A useful thing

How many terms are there in the expansion of (A+ B+ C+ · · ·+ k)n? For example,

(A+ B+ C)5 = 30A2B2C+ 10A3B2 + 10A2B3 + 30A2BC2 + 20A3BC+ 5A4B+ 10A3C2 + 10A2C3 + 5A4C+ A5

+30AB2C2 + 20AB3C+ 5AB4 + 20ABC3 + 5AC4 + 10B2C3 + 10B3C2 + 5B4C+ B5 + 5BC4 + C5

and you can count out that there are 21 terms.

Each term is of the form AaBbCc where a, b, c are • integers, • non-negative, and • sum to 5.

(And we know the coefficient:
5!

a!b!c!
)

13More generally, for any k ≥ 1, how many ways are there to arrange A through the kth letter K?
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In other words there are exactly as many terms as there are solutions to

a+ b+ c = 5, 0 ≤ a, b, c

Here in this section, we’ll count these in one way, and see that there are

(
5 + (3− 1)

(3− 1)

)
= 21

solutions, or 21 terms, or 21 ways to put 5 identical objects into 3 distinct bins.

In Section 5 we’ll have another approach, and count this as (−1)5
(−3

5

)
= 21, the coefficient of x5 in

the expansion of (1− x)−3. (You’ll see!) The method there will be the most general.

This kind of system comes up naturally when we are distributing identical objects into distinct bins.
For example

How many ways are there to distribute 6 identical things into bins A, B, C, D? If we put a things into
bin A, b things in to B, c into C, and d things into bin D, we are asking how many integer solutions
are there to the equation

a+ b+ c+ d = 6

requiring that
a, b, c, d ≥ 0

For n = 6, try to work the answer out by hand! 84

Here is a clever trick: Any solution to a + b + c + d = n can be represented as a string of n *’s
and three |’s. For example, with n = 6, the solution a = 3, b = 0, c = 1, d = 2 is encoded as
* * *︸ ︷︷ ︸
a=3

| ︸︷︷︸
b=0

| ∗︸︷︷︸
c=1

| ∗ ∗︸︷︷︸
d=2

• Encode the solution a = 2, b = 1, c = 1, d = 2 to a+ b+ c+ d = 6 as a string.

• What solution does the string | | * * * * | * * encode?

The key is that there is a bijection, an exact one-to-one and onto correspondence between the strings
of six *’s, (4 − 1) |’s, and the non-negative integer solutions to the equation a + b + c + d = 6,
partitioning 6 identical objects into four distinct groups.
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More generally:

The number of ways to distribute n identical objects into k distinct groups is

(
n+ (k − 1)

k − 1

)

Equivalently, this is the number of solutions to

n = a+ b+ · · ·+ k, with a, b, . . . , k ≥ 0

Equivalently, this is the number of terms in the expansion of

(A+B + · · ·+K)n =
∑

a+b+···+k=n

n!

a!b!..k!
AaBb..Kk

Exercises

1. How many ways are there to distribute 17 identical cookies to Merinda Ira Sally Paulo? 1140

2. In how many ways may nine identical bowls be thrown into any of three drawers? 55

3. In how many ways may six identical monitors be distributed among eleven work stations
(not everyone gets one!) 8008

4. How many terms are in the expansion of the polynomial (M+ I+ S+ P)n? Of (a+ b+ c)9?....,55

5. How many ways are there to

(a) distribute n identical objects into k different bins;

(b) label n objects with k labels ;

(c) solve n = a+ · · ·+ k, each a . . . k ≥ 0;

(d) write n as the ordered sum of k non-negative summands?

(e) What is the coefficient of xn in (1− x)−k?

6. We can expand on this method, changing the lower bounds on each variable:

(a) Why is the number of solutions to

a+ b+ c+ d = 10 with a ≥ 2, b ≥ 1, c, d ≥ 0
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the same as the number of solutions to

a+ b+ c+ d = 7 with a, b, c, d ≥ 0

120

Solve the following, noticing that any combination of lower bounds can be handled easily:

(b) a+ b+ c+ d+ e = 20 with a, b, c, d, e ≥ 0. 10626

(c) a+ b+ c+ d+ e = 20 with a, b, c, d, e ≥ 3. 126

(d) a+ b+ c+ d+ e = 20 with a ≥ −2, b ≥ −1, c ≥ 0, d ≥ 1, e ≥ 2. 10626

(e) w + x+ y + z = 30 with 0 ≤ w, 2 ≤ x, −2 ≤ y, −4 ≤ z 7770

7. How many way are there to give 20 identical candies to four children if each child must have
at least three candies? 165

8. How many way are there to distribute 20 identical candies to Alice, Bob, Cleo and Dina if Alice
must have at least seven, Bob at least five, Cleo at least three and Dina at least one? 35

9. How many ways are there to give twenty identical unicorn stickers to four kids, if each kid
must have at least three? 165

10. How many ways to distribute 20 identical batteries to four technicians if each technician must
receive at least three batteries? 165

11. How many ways are there to place 20 identical pieces of waste into four distinct bins if each
bin must have at least three pieces of waste? 165

12. Make up and solve a couple more of these.

Upper bounds are more problematic.

We can handle one upper bound: The number of solutions to

a+ b+ c = 5, a, b, c ≥ 0, and a ≤ 3

is the total number of solutions, with a, b, c ≥ 0, minus the solutions we don’t want, those with
a ≥ 4. 18

13. How many solutions are there to

(a) a+ b+ c+ d = 10 with 0 ≤ a ≤ 4 and b, c, d ≥ 0? 230

(b) v + w + x+ y + z = 10 with 0 ≤ v ≤ 2, 0 ≤ w, x, y, z? 671

(c) i+ j + k = 6 with i, j, k ≥ 1, i ≤ 2? 7
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Handling two upper bounds is not too bad:

The number of solutions to

a+ b+ c = 5, a, b, c ≥ 0, and a, b ≤ 3

is the total number of solutions, with a, b, c ≥ 0, minus those with a ≥ 4 minus those with
b ≥ 4, but then plus those with a ≥ 4 and b ≥ 4.

14. How many solutions to a+ b+ c+ d = 9 with a, b, c, d ≥ 0 and

• a ≤ 5 • a, b ≤ 5 • a, b, c, d ≤ 5
200,180,140

To handle the complex logic of the last example, we’ll turn to the Principle of Inclusion and Exclu-
sion, P.I.E in the next Section 4.

4 The Principle of Inclusion-Exclusion (P.I.E.)

These examples — and we’ll see many more — satisfy some conditions that are easy to count, but
their negations are harder to handle:

• Forbidden substrings: It is easy to count the number of arrangements of A B C D E F G H in which
some substrings, say ACD, BG and EH must appear. It is less obvious how to count those in which
none of those substrings appear, in other words how to count those in which all of the negations
appear.

• Distributions of identical objects into distinct bins: For a given n is easy to count the number of
solutions to a+ b+ c = n with given lower bounds on a, b, c. But it is harder to count the number
of solutions to a + b + c = n with given lower bounds and upper bounds on a, b, c. (Satisfying an
upper bound x is the same as not satisfying a lower bound x.)

• Hands with forbidden denominations: It is easy to count the number of hands that do not have
a particular denomination, or denominations— just deal from a smaller deck! But it is harder to
count the number of hand that do have a particular denomination, or have, say, exactly three out
of eight specific denominations in a hand of six cards.

P.I.E. to the rescue!
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(Draw diagrams!) Let U be a universal set (say arrangements of letters, or distributions of objects),
and let A,B,C, ... be subsets of U . We can also think of A,B,C, ... as conditions that elements of
U may or may not satisfy — the set A consists of exactly the elements satisfying condition A.

Let NU be the number Let NA be the number of objects in set A (and possibly other sets), the
number of objects satisfying condition A (satisfying at least condition A). Similarly let NB the
number of objects at least in B, etc, etc.

Next letNAB be the number of objects in set A∩B, the number satisfying condition A and satisfying
condition B (satisfying at least those conditions), and the same for all pairs.

And let NABC be the number of objects in set A ∩ B ∩ C, or satisfying condition A ∧ B ∧ C, and
of course the same for any AB . . .K.

Notice that if ∩ for sets and ∧ for conditions are treated as multiplication, it is natural to refer to
ABC, ABCD, or more generically AB . . .K.

The Principle of Inclusion-Exclusion is useful to us when we can easily calculate N∗’s where ∗ is
any AB . . .K (even just A, etc.), but we are interested in how many elements have none of these
condition. PIE will do more, too, and for each n, help us count how many elements satisfy exactly
n condition.

The Principle of Inclusion-Exclusion (version 1)

For subsets or condition A,B, . . . ,K, the number E0 of elements satisfying exactly zero
conditions is

E0 := NU − (NA +NB + . . .) + (NAB +NAC + . . .) − (NABC + . . .) + . . .

1. a) Draw a Venn diagram with universal set U and subsets A and B.

b) Suppose you know the sizes NU , NA, NB and NAB. Verify the correct value of E0, the
number elements not in A ∪B, satisfies P.I.E.

c) Among twenty-four sophomore eight are taking Biology and nine are taking Chemistry.
Two are taking both. How many are taking neither? How many are taking just one or
the other?

d) Among nineteen pea plants, thirteen express gene A and nine express gene B. What is
the maximum possible number of plants expressing both? The minimum? The max and
min of those expressing neither?

2. Draw a Venn diagram with universal set U and subsets A,B and C.
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3. Suppose you know the sizes NU , NA, NB, NC , NAB, NAC , NBC , and NABC . What is

a) E0, the number of elements not in any of A,B,C?

b) Among twenty four sophomores, ten are taking (A)lgebra, eight are taking (B)iology and
nine are taking (C)hemistry. In fact:

set S NS

A 10
B 8
C 9
AB 4
AC 3
BC 2
ABC 1

Fill in a Venn diagram with numbers.

c) How many are taking none of Algebra, Biology nor Chemistry? 5

d) How many are taking just one class. Write this in terms of the N ′
∗s. 12

e) How many are taking exactly two classes? Write this in terms of the N ′
∗s. 6

f) Try this the other way round. Draw a Venn diagram with three overlapping sets A,B,C.
Place numbers in each of the 23 regions of the diagram. What are NA, NAB etc, and
N0, N1, etc, and E0, E1, etc?

.

Recall that for any n ≥ 0,

E0 := NU − (NA +NB + . . .) + (NAB +NAC + . . .) − (NABC + . . .) + . . .

Let us give names to these terms: let

N0 := NU , the number of objects in the universal set U , or in other words, the number of objects
satisfying at least none of the conditions.

N1 := NA +NB + . . ., the sum over all the conditions or subsets.

N2 := NAB + . . . , the sum over all possible pairs of conditions or subsets.

N3, the sum over all triples,

etc.

Then
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E0 = +N0 −N1 +N2 −N3 . . .

More generally (and for a direct proof see14 ):

E1 = + N1 −
(
2
1

)
N2 +

(
3
1

)
N3 −

(
4
1

)
N4 + . . .

E2 = +
(
2
2

)
N2 −

(
3
2

)
N3 +

(
4
2

)
N4 −

(
5
2

)
N5 + . . .

E3 = +
(
3
3

)
N3 −

(
4
3

)
N4 + . . .

. . .

En =
∞∑
i=0

(−1)i
(
n+i
n

)
Nn+i

4. Check these formulas for the examples above, the number of elements with exactly one of
A,B,C, or exactly two, in terms of NA, NAB etc.

5. In a pool of 80 medical study patients, 15 have condition A (and possibly other conditions,
as for all of these), 29 have at least condition B, 34 have condition C and 38 have condition

14Soon the use of generating functions will give us a very nice proof. Here is a direct count:

Let n ≥ 1, and consider the sum

∞∑
i=0

(−1)i
(
n+i
n

)
Nn+i— in particular, how much does each object in U con-

tribute?

Suppose that an object has k properties. If k < n, then that object is not counted in any of the terms
Nn+i, and contributes nothing. If k = n, then that object is counted exactly once in Nn, and not at all in the
remaining terms, and so is counted once overall.

Suppose k > n. Then for each i, the object is included in Nn+i in
(

k
n+i

)
different ways — the object has k

properties and Nn+i is the sum of each N∗ for collections ∗ of (n+ i) properties.

Consequently an object with k > n properties is counted∑
i=0

(−1)i
(
n+ i

n

)(
k

n+ 1

)
=

∑
(−1)i (n+ i)!

n!i!

k!

(n+ i)!(k − n− i)!
=

k!

n!
(k − n)!

∑
(−1)i (k − n)!

(k − n− i)!i!

=

(
k

n

)
(1 + (−1))(k−n)

= 0

times!

Thus, totaling across all objects, those objects with exactly n properties are counted once each, and the
others contribute nothing. The sum is En.
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D. Moreover 7 have A & B, 7 have A & C, 5 have AD, 18 BC, 12 BD and 17 CD. Furthermore, 2
patients have conditions A, B & C, 3 have ABD, 3 have ACD and 8 have BCD. Finally 1 patient
has all four conditions, ABCD.

a) How many patients have none of the conditions? 15

b) How many patients have exactly one of the conditions? 28

c) How many patients have exactly two of the conditions? 24

d) How many patients have exactly three of the conditions? Four? 12,1

∼ 4.033 1026

6. How many numbers from 1 to 1000 are not divisible by any of 2, 3 and 5? 266

7. Twelve jelly donuts are distributed to four children, Alice, Bob, Cynthia and Daniel. If each
child has at least one, but no more than four donuts, how many ways can the donuts be
distributed?

Let’s spell this one out, and then give a few similar problems. There are four conditions: that
Alice has too many donuts, that Bob has too many, that Cynthia does, that Daniel does.

a) It is easy to count NA, NB, etc — do so! What is N1? 140

b) Count NAB, NBC , etc. How many of these terms are there? What is N2? 6

c) What is N3? 0

d) What is N4, and don’t forget N0. 0,165

e) Now how many ways can exactly none of these conditions be satisfied, no child has
too many donuts? 31

This will be the same process for the next few:

8. Twenty identical screwdrivers are to be distributed to five different work stations. How many
ways may this be done if each work station may have 3, 4, or 5 screwdrivers? •

9. Thirty balls drop into five distinct buckets. What is the probability that no bucket has more
than ten balls? ∼ 15.20%

10. A solution of non-negative integers to a + · · · + z = 26 is chosen at random. What is the
probability that all the variables are no bigger than 5? ∼ 68.72%

The next few problems restricting the number of suits or denominations in die rolls or hands
of cards:

11. Ten cards are chosen from a standard deck. How many ways can this be done in such a way
that

a) There is at least one card from each suit? 13308911902

b) At least one suit is not chosen? 2511112318

c) Exactly one suit is not chosen? 2479244196
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12. Six cards are chosen from a standard deck. How many ways can this be done so that there
are exactly four denominations? What is the probability that there are exactly four denomi-
nations?

13. Seven six-sided dice are rolled. What is the number of ways that exactly four different values
may appear on the dice? 126000

14. Six twenty-sided dice are rolled. How many ways can this be done so that there are exactly
four values showing? What is the probability that there are exactly four values showing?

15. How many strings can be formed from the thirteen letters COMBINATORICS

a) How many strings so that (at least) the substring OO appears? So that CC appears? II?

b) What is N1? 359251200

c) How many strings in which both OO and CC appear?

d) How many pairs are there? What is N2? 59875200

e) How many strings so that the substrings OO CC and II appear?

f) What is N3? N4? N0? 3628800

0

778377600
g) Using P.I.E., what is E0, the number of strings in which none of the substrings OO, CC

or II appear? 475372800

h) What is E1, the number of strings in which exactly one of the substrings OO, CC or II
appears? 250387200

i) What is E2, the number of strings in which exactly two of the substrings OO, CC or II
appears? 48988800

j) What is E3? Does this fit the formula for P.I.E.? (What are N4, N5, . . . ?) 3628800,0

16. Consider the 26! arrangements of the letters A to Z.

a) How many have all of the substrings ABC, DEF and GHI? ∼ 2.433 1018

b) How many have at least both of ABC, DEF (and possibly or not GHI) ? Similarly DEF, GHI
? etc. ∼ 1.124 1021

c) How many have at least ABC (and possibly or not the others)? Etc? ∼ 6.204 1023

d) How many have none of the substrings ABC, DEF and GHI? ∼ 4.014 1026, or
99.5%

e) How many have exactly one of the substrings ABC, DEF and GHI?

17. An arrangement of the fifty-two letters A A through Z Z is chosen at random. Do you bet there
is, or do you bet there isn’t a pair of identical of identical adjacent letters? ∼ 36.43%
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PIE and derangments

A permutation of a set is just a bijection from the set to itself — in other words, every thing in the
set is sent somewhere. In a permutation, it’s perfectly possible that something is sent to itself (is a
“fixed point”), and a basic question is, if a permutation is chosen at random, what is the probability
it has no fixed points, is a “derangement”? Let us answer this:

18. By hand, list the permutations (arrangements) of the digits 1, 2, and 3, and identify how
many have no fixed points (1 is not in the 1st position, etc.) By listing them out, count how
many of the 24 permutations of 1, 2, 3, 4 are derangements.

19. Nine students put their ID cards into a hat, and then each chooses an ID at random.15

a) What is the probability that no student has their own ID?

For this we need to work out some sub-problems. Suppose the students’ names are Alice
through Ira. The nine conditions are that Alice gets her own ID, that Bob gets his own
ID, . . . that Ira gets their own ID.

a) What is N0, or in other words, what is the number of ways that at least none of the
conditions are satisfied— what is the total number of ways the students can draw
the IDs from a hat? 362880

b) What is the number of ways that (at least) the first condition can be satisfied, that
Alice draws her own ID, NA 40320

c) Similarly for each student X, NX is the same. There are nine students,
(
9
1

)
, and so

give N1 = NA + . . . NI.

d) What is NAB, the number of ways Alice and Bob both draw their own ID’s (and
others may or may not)?

e) Similarly for all pairs XY, NXY is the same. Multiply by the number of pairs and
give N2.

f) Give N3, and for each n ≤ 9, give Nn.

g) Using PIE, give an expression for E0. Cancel out what you can but don’t oversimplify
the arithmetic, so that you can:

h) Show that E0/N0 is very nearly 1/e (!!)

b) What is the probability that exactly one student has their own ID (think about it, and
check using PIE).

c) two?

d) any n ≤ 9?

20. Let us work out the general formulas. Consider permutations on the n objects 1, 2, . . . n.
There are n conditions. What are:

a) N0

15This strange premise is stereotypical for problems on derangements.

31



b) N1

c) N2, etc

d) E0, the number of derangements

e) E0/N0, especially as the number n of objects tends towards infinity.

f) Similarly, what is limn→∞Ek/Nk?

21. A simple cipher is just a derangement of the letters of the alphabet, each letter being replaced
with some other letter.

a) To a close approximation, how many simple ciphers are possible in the twenty-six letter
roman alphabet A, ... Z?

b) How many even simpler ciphers are possible if each of the five vowels must be replaced
with a vowel and each of the 21 consonants must be replaced with a consonant?

“Sya veka xova o dumyak up, sya aopuak us up se nadumyak us!”
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5 Generating functions

A sequence a0, a1, .... is simply a list of numbers, which we’ll abbreviate (ak).
16 Generating

functions are a good way to manipulate and work with sequences.

There are a few different kinds of generating functions, but we will mostly work with “ordinary”
generating functions, and touch on with “exponential” gf’s. (There are other kinds of generating
functions as well.)

A function A(x) is the ordinary generating function for a sequence (ak) iff A(x) = a0x
0 +

a1x
1 + a2x

2 + . . ..

We’ll write (ak)
ogf←→ A(x) to mean that A(x) is the ordinary generating of the sequence (ak).

In other words, (ak)
ogf←→ A(x) if and only if each ak = [xk]A(x), the coefficient of xk in the

expansion of A(x).

An expression is in closed form iff it is expressed using a finite number of standard operations
and no reference to infinity. We will try to express our generating functions in closed form.

Generating functions are a kind of way of encoding sequences of numbers, as Taylor series, and
manipulating the results to work out any number of combinatorial problems, in surprisingly sneaky
ways!

For example, the number of ways to split a number $n into $5 and $10 bills is exactly the coefficient
of xn in the expansion of

((x5)0 + (x5)1 + (x5)2 + (x5)3 + . . .) · ((x10)0 + (x10)1 + (x10)2 + (x10)3 + . . .)

= 1 + x5 + 2x10 + 2x15 + 3x20 + 3x25 + 4x30 + . . .

There are four17 ways to split $30, as $10,10,10, or as $10,10,5,5, or as $10,5,5,5,5, or as all $5’s.

How does this magic work? Because the coefficient 4 of x30 records the four ways to choose a term
from ((x5)0 + (x5)1 + (x5)2 + (x5)3 + . . .) and a term from ((x10)0 + (x10)1 + (x10)2 + (x10)3 + . . .)
to multiply to get x30.

16We will almost always index our sequences starting at 0 — so be a little careful!
17oh yeah, there are no ways to split $17 into $5’s and $10’s and the coefficient of x17 is, uh, 0

33



Since those are geometric series, we can write this much more succinctly: Remember that for |x| < 1,
1 + x + x2 + x3 + . . . = 1/(1 − x). For arbitrary values of x, this won’t make literal sense, but we
formally declare

1 + x+ x2 + x3 + . . . :=:
1

1− x

and so ((x5)0 + (x5)1 + (x5)2 + (x5)3 + . . .) = 1/(1− x5).

The number of ways to split $n into $5 and $10’s is the coefficient of xn in the expansion of

1

(1− x5)(1− x10)

which is easier to work with and leverage.

5.1 Exercises

1. a) Let (ak) =

(
4

k

)
, the sequence 1, 4, 6, 4, 1, 0, 0, ..... What is the (closed form) generating

function for this sequence?

b) More generally, for an arbitrary counting number n, what is the closed form generating

function for the sequence (ak) with ak =

(
n

k

)
.

2. For some values x, we can literally write the infinite sum 1 + x + x2 + . . . as 1/(1 − x), a
simpler expression. Though this doesn’t exactly make sense for all x, we simply pretend that
it does, and define 1 + x + x2 + . . . = 1/(1 − x). Write the following series in simpler finite,
“closed” form:

a) 1 + x2 + x4 + x6 + . . .

b) x+ x3 + x5 + x7 + . . .

c) x3 + x4 + x5 + x6 + . . .

d) 1 + (x/4) + x2/16 + x3/64 + . . .

e) (1+x+x2+x3+ . . . ) ·(1+x+x2+x3+ . . . )

f) (1 + x3 + x6 + . . . ) · (x2 − x3 + x4 − x5 . . . )

3. What are (closed form) ordinary generating functions for the following sequences:

a) 1,1,1,1,1,....

b) 1,2,4,8,16,...

c) 1,-1,1,-1,1,...

d) 0,0,1,1,1,1,....

e) 1,0,1,0,1,0,....

f) 0,1,0,1,0,1,....
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g) 0,1,0,0,1,0,0,1,...

h) 2,6,18,54,162,...

i) 7,-14,28,-56,112,...

j) ak = 3k − 2 · 4k

4. What sequences are generated by:

a) 1/(1− 3x)

b) 1/(2 + x)

c) (1 + 3x)5

d) 1/(1 + 3x)5

e) (x− 1)/(1− 3x)

f) 1/(1− x2)

g) 1/(1 + x)(1− x)

h) 1/(1− 2x− 3x2)

i) 1/(1− 2x+ x2)

For the last three of these, you will need to use the method of partial fractions.

5. A helpful identity. You already know this from examples. Explain why

[xn]xkf(x) = [xn−k]f(x)

and

[xn+k]f(x) = [xn]
f(x)

xk

For example, what is the coefficient of xn in x2/(1− 2x)3?

6. Let’s look again at distributing n identical objects into k distinct categories, the number of
solutions to a + · · · + k = n. Generating functions will give us another way to count these
solutions.

a) For a fixed counting number n, the number of solutions are there to

a+ b+ c+ d = n, with a, b, c, d ≥ 0

is exactly

[xn](1 + x+ x2 + ...)4 = [xn]
1

(1− x)4

Explain. Check that this agrees with our previous count.

b) Let’s change some of the conditions: write a generating function for the number of
solutions, for each given n, of

a+ b+ c+ d = n, with a ≥ 0, b ≥ 5, c ≥ −2, d ≥ 3

From the generating function calculate the number of solutions for each n.

c) Write a generating function for the number of solutions, for each given n, of

a+ b+ c+ d = n, with 0 ≤ a, b, c, d ≤ 4

(The generating function is not hard, but it’s less friendly to obtain its coefficients; use
“Expand” in Wolfram alpha.
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7. (a) How many ways are there to distribute n identical donuts to Alice, Bob, Cindy and
Daniel, if each child should get at least one donut?

(b) How many ways are there to distribute n identical donuts to Alice, Bob, Cindy and
Daniel, if each child should get at least one donut but no more than three?

8. Ms. Witham will distribute n pennies to Alice, Bill, Carl, Dora and Edward; Alice and Bill
(her favorites) will get at least five pennies, and all the others will get at least one penny. But
Edward (the rascal!) will get no more than three.

• How many ways may she distribute n = 20 pennies?

• Write, in closed form, an ordinary generating function for the number of ways that n
pennies may be distributed.

9. Here’s a batch of problems that are, in fact, all the same. Give closed form generating functions
for:

a) the number of ways there are to break $n into change using $1, $3 and $7 bills?

b) the number of solutions there are to a+b+c = n with each a, b, c ≥ 0, and b is a multiple
of 3 and c is a multiple of 7?

c) the number of solutions there are to x+ 3y + 7z = n with each x, y, z ≥ 0?

d) Using Wolfram Alpha or some other symbolic calculator, find the number of solutions
with n = 25 . 22

10. The summation operator is very useful. Prove (or at least justify) that if f(x) is the
ordinary generating function for (ak), then f(x)/(1 − x) is the ogf for the sequence of sums
a0, (a0 + a1), (a0 + a1 + a2), . . . .

In other words, show that

[xk]f(x)/(1− x) =
k∑
0

ai

And try an example.

11. Using the summation operator, find the ordinary generating function for the sequences

a) 1, 2, 3, 4, 5...

b) 0, 1, 4, 9, 16, ... (What sequence is this the sum of? )

c) 0, 1, 8, 27, 64, ....
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d) On the nth day of Christmas18, my true love gave to me n Xn’s, (n− 1) X(n−1)’s . . . two
X2’s and oneX1. (On the 0th day of Christmas, of course, my true love gave me nothing.)

i) Give the ordinary generating function for the number of things my true love gave to
me on day n.

ii) Give the ordinary generating function for the total number of things my true love
has given me up through day n.

iii) What is the exact total number of gifts given up through day n? How fast does this
total grow as n grows?

12. Let’s show that 1 + 2 + 22 + . . . 2n = 2n+1 − 1 using the summation operation.

a) Give a ogf for the sequence 1, 2, ..., 2n, ....

b) Using the summation operator, give an ogf for the sequence
1, (1 + 2), (1 + 2 + 4), ...(1 + 2 + 22 + . . . 2n), ...

c) Using partial fractions, split apart this ogf and show it also generates
(21 − 1), (22 − 1), ..., (2n+1 − 1), . . .

13. Generating functions easy to find for the number of partitions of a number (though it is
usually difficult to get a formula for the exact coefficients; use Wolfram Alpha to expand some
of these). How many partitions of the counting number n are there if (wait: try out some

examples of these with small n— can you count the partitions out?)

a) The summands are just counting numbers;

We’ll give you this one:

(1+x+x2+...)(1+x2+x4+...)(1+x3+x6+...)... =
1

1− x
· 1

1− x2
· 1

1− x3
.... (*)

or more precisely
∞∏
n=1

∞∑
k=0

xnk =
∞∏
n=0

1

1− xn

For example, the eleven partitions of 6 are

• 6

• 5 1

• 4 2

• 4 1 1

• 3 3

• 3 2 1

• 3 1 1 1

• 2 2 2

• 2 2 1 1

• 2 1 1 1 1

• 111111

18On the twelfth day of Christmas my true love gave to me: twelve drummers drumming, eleven pipers piping, ten
lords a’leaping, nine ladies dancing, eight maids a’milking, seven swans a’swimming, six geese a’laying, five golden
rings, four calling birds, three French hens, two turtle doves, and a partridge in a pear tree. Then on the thirteenth
day of Christmas...
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In the expansion of the above, we have

(∗) = ...+ (x6)1 · · ·+ (x5)1(x1)1 · · ·+ (x4)1(x2)1 · · ·+ (x3)2 · · ·+ (x3)1(x2)1(x1)1 . . .
+(x3)1(x1)3 · · ·+ (x2)3 · · ·+ (x2)2(x1)2 · · ·+ (x2)1(x1)4 · · ·+ (x1)6

= . . .+ 11x6 + . . .

The algebra of the expansion captures the logic of the possible partitions. If we want to
restrict the possibilities for our partitions, we just strike out the corresponding terms.
Here are more examples:

b) the summands cannot be greater than 5;

c) the summands are odd counting numbers;

d) the summands are distinct;

e) the summands are distinct, and from 1 to 9.

14. Euler showed the number of partitions of n into odd summands is the same as the number
of partitions of n into distinct summands, by showing the generating functions in ?? (c) and
(d) are algebraically the same. Do the same. (Hint: multiply each term of the generating
function (d) by (1−xk)/(1−xk); apply the difference of squares, and simplify. This is a super
cool proof.

15. Here’s another way to get generating functions for sequences like n, or n2 or 3n3 + n− 7.

a) The function f = 1/(1 − x) generates the sequence 1, 1, 1, ..... Show that d
dx
f generates

0, 1, 2, 3, ... and that x d
dx
f generates 1, 2, 3, 4, 5... We can write this as [xn](x d

dx
)f = n.

b) Show that (x d
dx
)2f generates the sequence n2 (where (x d

dx
)2f means x d

dx
(x d

dx
f)). Check

this matches your answers to b) above.

c) In general, if P (x) is a polynomial, show the nice fact that P (x d
dx
)f generates the se-

quence P (n).

d) Explicitly give closed form generating functions for the sequences

i) (n2 + n)/2 (the triangular numbers)

ii) n(n+ 1)(2n+ 1)/6 = (n+ 3n2 + 2n3)/6 (the tetrahedral numbers)

iii) n3

5.2 Generating Functions and PIE

Consider a set, and subsets defined by some conditions. For each collection C of k of these conditions,
it is easy to count the number NC of ways that at least those conditions are satisfied. Let Nk be
the sum of these numbers,

38



Nk :=
∑

collections C

of k conditions

NC

and let N (x) be the generating function

N (x) =
∑

Nkx
k

Let Ek be the number of ways that exactly k conditions are satisfied and let E(x) be the generating
function for the Ek’s, in other words that

E(x) := E0 + E1x+ E2x
2 + E3x

3 + ...

The Principle of Inclusion-Exclusion is useful when we are able to work out the Nk’s but we really
want to know the Ek’s. P.I.E. shows the way!

To get started, lets try to write each Nk in terms of the Ek’s. (That gives us a system of equations,
that we’ll then try to solve.)

Suppose an object satisfies exactly k conditions. How many times would it be counted in Nj, where
j ≤ k? Nj is summed up over all the choices of j conditions; an object that satisfies k conditions
will be counted

(
k
j

)
times. This is so for every object counted in Ek. Thus

Nj =
∑
k

(
k

j

)
Ek

Now let’s look at the generating functions N (x) and E(x) (dropping all the
(
k
l

)
’s equal to 0).

N (x) = N0x
0 +N1x

1 +N2x
2 + ....

= x0
((

0
0

)
E0 +

(
1
0

)
E1 +

(
2
0

)
E2 + . . .

)
+x1

((
1
1

)
E1 +

(
2
1

)
E2 +

(
3
1

)
E3 + . . .

)
+x2

((
2
2

)
E2 +

(
3
2

)
E3 +

(
4
2

)
E4 + . . .

)
...
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All we have to do is solve for the E’s in terms of the N ’s! But, gathering up the Ei’s, we can
rearrange this as

N (x) = (
(
0
0

)
x0)E0

+(
(
1
0

)
x0 +

(
1
1

)
x1)E1

+(
(
2
0

)
x0 +

(
2
1

)
x1 +

(
2
2

)
x2)E2

+(
(
3
0

)
x0 +

(
3
1

)
x1 +

(
3
2

)
x2 +

(
3
3

)
x3)E3

+ . . .

or more succinctly:

N (x) = (1 + x)0E0 + (1 + x)1E1 + (1 + x)2E2 + . . . (1 + x)nEn + . . .

In short, N (x) = E(1 + x). Consequently,

E(x) = N (x− 1)

Let’s follow some conclusions of this, explicitly find the formulas, and prove PIE holds:

Suppose we know N0, N1, ...., and

E(x) = N (x− 1) = N0(x− 1)0 +N1(x− 1)1 + ...+Nk(x− 1)k + ...

Then

16. Expand out each Nn(x− 1)n = Nn

∑
(−1)k

(
n
k

)
xk. In the sum E(x) = N (x− 1), gather up the

terms Enx
n— the coefficients are just what we have been seeking. Each En is expressible as

the summation of terms ±
(
k
n

)
Nk:

a) E0 =

b) E1 =

c) E2 =

d) E3 =
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e) Ek =

This19 gives a nice proof of PIE, but in practice its application remains as before.

19

Thus
N (x− 1) =

∑
(x− 1)kNk

= (x− 1)0N0 + (x− 1)2N1 + ....

= x0
∑

i

(
i
0

)
(−1)i−0Ni

+x1
∑

i

(
i
1

)
(−1)i−1Ni

+x2
∑

i

(
i
2

)
(−1)i−2Ni

+ . . .

+xk
∑

i

(
i
k

)
(−1)i−kNi

+ . . .

Therefore, for any k, Ek =
∑

i

(
i
k

)
(−1)i−kNi.
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5.3 Rook Polynomials, an application of generating functions

How many ways can a bunch of complicated conditions be satisfied?

An example

Suppose we are pairing up items in {A,B,C,D,E} to items in {1, 2, 3, 4, 5}, but subject to some
weird complicated conditions. To represent this diagramatically:

We can only match
A to 1 or 2
B to 2, 3 or 4
C to 1, 2, or 4
D to 1, 2, 4, or 5
E to 1, 2, 4, or 5

we might draw

1 2 3 4 5

a

b

c

d

e

These are perfectly reasonable questions:

• Can we match each of A,B,C,D and E with 1, 2, 3, 4, and 5, satisfying these conditions? In
other words, can we fit 5 rooks into this board?

• If we can, in how many ways may we do this?

• Or to change it up: How many ways may we fit 3 rooks in, with none on the same row or
column as any other?

• How can we systemize this?

Another Example

Three inputs XY Z must link to one of four outputs STUV . No output may be linked to from more
than one input. X may link to STU , Y to TUV , and Z to SV . How many ways may two of the
three inputs be linked?

1. Draw a board representing this problem.

Another Example
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Six teams A,B,C,D,E, F are available to be paired with four clients, W,X, Y, Z (Two teams will
not be needed.) Teams A,B,C are experts on the needs of W,X, Y . Teams D,E work well with
Y, Z. Team F will only work with team W . How many ways may the four clients be matched up
with a team?

2. Draw a board representing this problem.
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The general picture

Without getting into any formalisms, we want to count how many ways rooks may be placed on a
board, no two rooks occupying the same row or column.

Another way to put this is that we are counting the number of ways to choose matchings between a
pair of sets, subject to some conditions. The sets are the horizontal rows and the vertical columns.
To choose a rook is to match up a row and a column. The conditions describe which matchings are
permitted and which are forbidden — which squares are in the board and which are not.

Fixing a board, for each k ≥ 0, we let rk be the number of ways to place k rooks. You can guess
that r0 = 1 on every board.20

3. Things will be more complicated quickly. By hand, calculate the sequence r1, r2, r3, r4, . . . for
the boards in the examples above.

Do you get these numbers?
r0 r1 r2 r3 r4 r5

ex. 1 1 16 78 135 74 8
ex. 2 1 8 17 8
ex.3 1 14 60 92 42

4. Here is a very complicated 40×250 board, with 2473 available squares. At least we can easily
see: what is r1, the number of ways to place one rook on this board?

For any given board B, we consider the generating function

P (B) := r0 + r1x+ r2x
2 + . . .

of this sequence r0, r1, r2 . . . , rk . . . . These generating functions P (B) are called rook polynomials.

5. Explain why these are polynomials, that there are only finitely many non-zero coefficients rk
on a finite board B

The rook polynomial of a complete board

20As you’ll see in a moment, this is the sensible value for even an empty board.
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We’ll call an m× n rectangle of unit squares the “complete m× n board”, and denote this Bm×n.
Here are B4×4 and B3×7:

6. In an n× n board Bn×n, how many ways can

(a) one rook be placed?

(b) n rooks be placed?

(c) two rooks be placed? (Choose the columns, then the rows...)

(d) k rooks be placed, for each 1 ≤ k ≤ n?

(e) Give the rook polynomial P (Bn×n)

7. On an m× n board Bm×n,

(a) how many ways can k rooks be placed?

(b) Does the formula work out correctly to 0 if k is too large?

(c) Give the rook polynomial P (Bm×n).

A recursive way to calculate rook polynomials

There’s an easy algorithm to calculate rook polynomials! (Easy to understand that is — but
intractably lengthy for large boards.)

We are interested in the ways to place k rooks on a board; lets call these ways placements.

The insight is that the placements of k rooks on a board B can be split into two cases, corresponding
to placements of rooks on smaller boards. These placements in turn split into smaller cases still,
and so on, until we have reduced the problem to counting on the very simplest boards of all.

Fix a board B, like the one at left below, and choose any square within it. (Any square will work
for the algorithm but a human who wants to save time should be strategic!) Let B◦ be the board
with the special square deleted. Let B† be the board with the entire row and column of the special
square deleted. Then

Theorem:
P (B) = P (B◦) + xP (B†)
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For example,

Proof: It suffices to prove that the coefficients of the polynomials on the right and left are the same.
We need to show that

[xn]P (B) = [xn](P (B◦) + xP (B†))
= [xn]P (B◦) + [xn−1]P (B†)

But this is clear: [xn]P (B) is the number of ways to place n rooks on the board B. These ways split
into two cases: there is not a rook on the special square or there is a rook on the special square.

The number of ways in the first case is exactly the number of ways to place n rooks on P (B◦), in
other words, exactly [xn]P (B◦).

In the second case, a rook has already been placed on the special square, and its row and column are
no longer available for the remaining (n−1) rooks, which may be placed on B†, in [xn−1]P (B†) ways.
The coefficients of the polynomials are thus equal, and so too are they: P (B) = P (B◦) + P (B†).

It’s also helpful to notice that:

Theorem Let B be the disjoint union of two subboards, B1 and B2, that share no column and
share no row. Then P (B) = P (B1)P (B2).

Proof: This is standard issue generating function stuff! The set of all placements of n on B can be
partitioned into many subcases: no rooks on B1 and n rooks on B2; one rook on B1 and (n − 1)
rooks on B2, . . . , . . . and finally n rooks on B1 and no rooks on B2. But this is perfectly captured
as the product of the two rook polynomials.

Taking rn to be the number of ways to place n rooks on B, and sk, tk to be the number of ways to
place k rooks on B1, B2 respectively, we have

rn = s0tn + s1tn−1 + · · ·+ snt0 =
∑
i+j=n

sitj

and so
(r0 + r1x+ r2x

2 + . . . ) = (s0 + s1x+ s2x
2 + . . . )(t0 + t1x+ t2x

2 + . . . )

Thus
P (B) = P (B1)P (B2)
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Finally

Theorem: Let B and B′ be boards that differ only by permuting their rows and permuting their
columns. Then P (B) = P (B′).

8. In order for the recursion to be correct, what must be the rook polynomial of the empty board,
R(∅)? (Hint: Consider the recursion starting from B1×1.)

Let’s work through an entire example. To calculate the rook polynomial of the board at left, we
choose (arbitrarily) a special point. We have

To calculate with these, we break the boards up further. We have

The right term is just xP (B1×2) = x(1 + 2x). The left term is a product of two disjoint boards:

One of these is just P (B1×2) = 1 + 2x and the other is

= (1+2x)+x(1+x) = 1+3x+x2, which you may easily check by hand. This gives

(1 + 2x)(1 + 3x+ x2) + x(1 + 2x) = 1 + 6x+ 9x2 + 2x3.

Meanwhile, returning to our original board, we still must calculate

(since we may rearrange rows or colums to make things easier for ourselves).

We now have = (1 + 3x+ x2) + x(1 + 2x) = 1 + 4x+ 3x2

Completing the problem we have
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(1 + 6x+ 9x2 + 2x3) + x(1 + 4x+ 3x2) = 1 + 7x+ 13x2 + 5x3.

9. Find the rook polynomials for the following boards. (Hint: be strategic!)

c d

e

b

a

10. In the environment of your choice, program the recursive calculation of the rook polynomial
of a board, and check your answers to all of the above problems.

P.I.E. and complementary boards

Before continuing, recall from Exercise 7 that we have a formula for P (Bm×n). We’ll need these
rook coefficients, so let us define

P (m,n, k) := [xk]P (Bm×n) =
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On the left is a complicated board B. It will be tedious to calculate its rook polynomial by hand.
It is easy to calculate the rook polynomial for its complimentary board B′, shown on the right:
P (B′) = P (B1×1)

2P (B1×2) = (1 + x)2(1 + 2x) = 1 + 4x+ 5x2 + 2x3.

a b

1

2

3

4

We know the rook coefficients for B′ but we want the number of ways to place k rooks on B, for
each k.

We approach this by first considering out all possible ways to place k rooks on the complete board,
B4×5. From Exercise 7, you’ll recall this number, which we are denoting P (4, 5, k). P (4, 5, 3) = 240

Out of these ways to place k rooks on B4×5, let’s define conditions we don’t want to count:

• Na, the number of placements with a rook on square (a)

• Nb, the number of placements with a rook on square (b)

• Nc, the number of placements with a rook on square (c)

• Nd, the number of placements with a rook on square (d)

Fixing a specific k, N0 is the number of ways that at least none of these conditions are satisfied. In
other words, N0 = P (4, 5, k).

We can count Na, Nb, . . . : For example, a placement is counted in Na if there is a rook on square
(a) and then (n − 1) rooks are placed on the (4 − 1) × (5 − 1) subboard disjoint from square (a)
(with no regard of whether or not any of the other special squares end up with a rook). This is the
same for each term, and there are exactly r1 terms so we have

N1 = Na +Nb +Nc +Nd = r1 · P (4− 1, 5− 1, k − 1)

We can count N2 = Nab +Nac + · · ·+Ncd, but some of these terms are 0. Some pairs of conditions
can’t be satisfied. For example, there is no way to place rooks on both (c) and (d) and so Ncd = 0.
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But we do know that there are exactly r2 terms, the number of ways two rooks may be placed on
B′. Each term is the number of ways to place two rooks on the specified squares, and the other
(n− 2) rooks on a (4− 2)× (5− 2) board. In other words

N2 = r2P (4− 2, 5− 2, k − 2)

In the same way we can work out N3 = r3P (4− 3, 5− 3, k − 3).

As a check, give N4 = . What is N5?

With N0, N1, . . . in hand, we can calculate E0, the number of ways exactly none of the conditions
are satisfied and that all k rooks are placed on the original board B.

Theorem Let B be an m × n board. Let r0, r1, ... be the rook coefficients of the complementary
board B′, so P (B′) = r0 + r1x+ r2x

2 + . . . . For each k ∈ {0, 1, 2...}, the rook coefficient Rk of the
original board satisfies:

Rk = r0P (m,n, k)− r1P (m− 1, n− 1, k) + · · · =
∑
j

(−1)jrjP (m− j, n− j, k − j)

Notice that the bounds of the sum at the right don’t need to be specified — all but finitely many
of the terms are zero.

11. Fill in the proof of the theorem.

12. For the example above, work out

(a) R0, R1 (we have easy ways to do those!)

(b) R2,

(c) R3,

(d) R4.

13. For the following board B, find P (B) directly, and then as a check calculate its rook coefficients

using P.I.E.

14. Mrs. Teabottle is quite worried about the annual Gardenia Banquet. Ms. Aggravant, Mr.
Bellicose, Mrs. Colic and Dr. Dreck all detest each other and will have to sit at different
tables. Fortunately, there are five tables (Red, Green, Blue, Yellow and Orange) to choose
from.
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But neither Ms. Aggravant and Mr. Bellicose may sit at the Red or Green Tables. Mrs. Colic
absolutely cannot be allowed to go near the Yellow or Orange tables (we all remember what
happened last year!) and Dr. Dreck must not sit at the Blue or Yellow tables.

Oh dear! cries Mrs. Teabottle.

But she worries too much! How many ways can she seat these difficult guests?
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6 Exponential generating functions

Ordinary generating functions are useful for counting things like

• The number of partitions of a number into summands

• The number of solutions to a+ b+ c+ · · · = n
(i.e. the number of ways to choose a pile of n a’s, b’s, c’s ...).

• The number of ways to distribute n equivalent objects into “bins”
(say, n donuts to some children).

In each of these, the generating function is the product of polynomials. The logic in the counting is
exactly captured by the algebra of polynomial multiplication, and we can even encode constraints
on the summands/solutions/bins very simply, just by the powers we use in the polynomials we
multiply.

Exponential generating functions are useful for counting things like

• The number of partitions of a set into subsets

• The number of n-letter strings of a’s, b’s, c’s, ...
(i.e the number of ways to distribute the numbers 1st, 2nd, ... nth among the bins a’s, b’s,
c’s, ...).

• The number of ways to distribute n different objects into bins
(say, n rare coins to some children, or n students into classrooms).

The basic reason will be the same as for ordinary generating functions: the logic of multiplying
exponential generating functions will capture the counting correctly.

An exponential generating function for the sequence a0, a1, ... is

a0

(
x0

0!

)
+ a1

(
x1

1!

)
+ a2

(
x2

2!

)
+ · · · =

∞∑
k=0

ak

(
xk

k!

)

We’ll write (ak)
egf←→ A(x) to mean that A(x) is the exponential generating of the sequence (ak).
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In other words, (ak)
egf←→ A(x) if and only if each ak = [xk/k!]A(x)

Before we see the utility of these, let’s try some warm up exercises; keep in mind that

r0 + r1 + r2/2 + r3/3! + r4/4! + · · · = er

1. Find the exponential generating function for the sequences

a) 1, 1, 1, 1, 1, ...

b) 0, 0, 1, 1, 1, 1, . . .

c) 1, 2, 4, 8, 16, 32, ...

d) 1,−1, 1,−1, 1,−1, . . .
e) 1, 0, 1, 0, 1, 0, 1, 0, ...

2. Determine the sequence generated by the following exponential generating functions:

a) e3x

b) e−x2

c) 2xe3x

d) 2xe3x − e−x − x2

e)
1

1− x
(as an exponential generating function!)

3. Write the following series in closed form:

a) x+ x2/2 + x3/3! + x4/4! + . . .

b) x2 + x3 + x4/2 + x5/3! + x6/4! + . . .

c) 1− x2/1! + x4/2!− x6/3! + x8/4! + . . .

d) 1− x2/2! + x4/4!− x6/6! + x8/8! + . . .

e) 1 + 3x+ 9x2/2 + 27x3/3! + 81x4/4! + . . .

f) (1 + x+ x2/2 + x3/3! + . . . ) · (1 + x+ x2/2 + x3/3! + . . . )

g) (1 + 2x+ 4
2!
x2 + 8

3!
x3 + . . . ) · (1− x+ x2/2− x3/3! + . . . )

4. Show (
∑

k x
k/k!)n =

∑
k(nx)

k/(k!)
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How to calculate with exponential generating functions

Let’s first recall the number of strings of the letters M I S S I S S I P P I is
11!

1!4!4!2!
= 34650,

because there are 11! strings of 11 distinct letters, but this overcounts by the 1! way to rearrange the
one M, 4! ways to rearrange the four S’s, 4! ways to rearrange the four I’s and 2! ways to rearrange
the pair of P’s. As a quick test, how many ways are there to rearrange the letters in
S P I M I S M I S M S ? 46200

Suppose instead we want to count all possible 11-letter strings using the letters M, I, S, P.

In fact, we already know the answer to this: there are 411 ways. And if we let an be the number of
n-letter strings, then an = 4n and the exponential generating function is

(4n)
egf←→ A(x) := 40 + 41x+ 42x2/2! + 43x3/3! + · · ·+ (4x)n/n! + · · · = e4x

Let’s see this another way!

If an n-letter string has m M’s, i I’s, s S’s and p P’s, we know, first off, that m+ i+ s+ p = n, and

each m, i, s, p ≥ 0. For a given m, i, s, p, the number of such strings is
n!

m!i!s!p!
, and so the sequence

is (not so usefully)

an =
∑

m+ i+ s+ p = n
m, i, s, p ≥ 0

n!

m!i!s!p!

(btw: we know how many possibilities there are for m, i, s, p: (−1)4
(
−4
n

)
=

(
n+ 3

3

)
)

But let’s build this up.

The exponential generating function for the number of n-letter strings of just M’s is M(x) :=
1 + x+ x2/2 + x3/3! + · · ·+ xm/m! + · · · = ex (there is exactly one n-letter string of just M’s).

Similarly the exponential generating functions for strings of just S’s is S(x) :=
∑

xs/s! = ex,
of just I’s is I(x) :=

∑
xi/i! = ex and of just P’s is P (x) :=

∑
xp/p! = ex.

We already knew the number an of n-letter strings with all four letters is 4n, with egf A(x) = e4x

—and it isn’t coincidence that A(x) = M(x) I(x) S(x) P (x) = (ex)4 !

Let’s take a close look at
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(1 + x+ x2/2 + x3/3! + · · ·+ xm/m! + . . . )(1 + x+ x2/2 + x3/3! + · · ·+ xi/i! + . . . )

(1 + x+ x2/2 + x3/3! + · · ·+ xs/s! + . . . )(1 + x+ x2/2 + x3/3! + · · ·+ xp/p! + . . . )

What is the coefficient of, say, x11/11!? Each term that contributes to this will come from a
choice of xm from the first series, xi from the second, xs from the third and xp from the last, with
m+ i+ s+ p = 11, each m, i, s, p ≥ 0. Let’s consider the specific case m = 1, i = 4, s = 4, p = 2:

...+

(
x1

1!

)(
x4

4!

)(
x4

4!

)(
x2

2!

)
+ . . . = · · ·+ 1

1!4!4!2!
x11 + . . .

But we want the coefficient of x11/11!:

= · · ·+ 11!

1!4!4!2!
x11/11! + . . .

That is exactly the correct number of 11-letter strings formed from one M, four I’s, four S’s and two
P’s!!

The coefficient of x11/11! will be the sum over all possible numbers of m of M’s, i of I’s, s of S’s and
p of P’s, with m, i, s, p summing to 11 and each non-negative — and in general

[xn/n!](ex)4 =
∑

m+ i+ s+ p = n
m, i, s, p ≥ 0

n!

m!i!s!p!

It works!!

Furthermore, suppose we put restrictions on the numbers of each letter. Perhaps, for example, we
want

• an even number of each letter. Then as before, we simply include the summands that encode the
restrictions. The exponential generating function for the numbers of n-letter strings with an even
number of M’s, I’s, S’s and P’s is

(1 + x2/2! + x4/4! + x6/6! + . . . )4 = cosh4 x

• If we require at least one of each letter, the egf is (ex − 1)4.
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• If we want n-letter strings taken from the specific letters M I S S I S S I P P I we have
m+ i+ s+ p = n, but also 0 ≤ m ≤ 1, 0 ≤ i, s ≤ 4 and 0 ≤ p ≤ 2 and the generating function is

(1 + x)(1 + x+ x2/2 + x3/3! + x4/4!)2(1 + x+ x2/2)

It’s not so easy to work with this directly: use Wolfram Alpha or something similar to expand and
actually find the coefficients of each xn/n!. Or we can use P.I.E.
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More Exercises:

5. Ms. Witham will distribute n pennies to Alice, Bill, Carl, Dora and Edward; Alice and Bill
(her favorites) will get at least five pennies, and all the others will get at least one penny. But
Edward (the rascal!) will get no more than three.

• How many ways may she distribute n = 20 pennies?

• Write, in closed form, an ordinary generating function for the number of ways that n
pennies may be distributed.

6. Give an exponential generating function for the number of ways Ms Witham can distribute n
rare coins, all different, Alice and Bill still receiving at least five each, the other children at
least one, Edward receiving three or fewer.

7. Give the exponential generating function for the number of n-letter strings formed from

• the letters A B C D R

• the letters A B C D R if an odd number of each letter must be used.

• the letters A B C D R if no more than three of each letter may be used. Use Wolfram
alpha to obtain the exact numbers as coefficients of xn/n!.

• the letters
A B R A C A D A B R A.

8. A company assigns n employees into five teams. Give an exponential generating function for
the number of ways that this may be done if

a) Every team has at least two employees.

b) Every team has no more than ten employees.

9. Prove a curious identity: kn =
∑

c1 + c2 + · · ·+ ck = n
ci ≥ 0

n!∏
(ci)!

.
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7 Recurrence Relations

A recurrence relation on a sequence a0, a1, .... is an expression of each an in terms of earlier values in
the sequence, together with some initial terms. The most famous example of a recurrence relation
is that defining the Fibonacci numbers:

f0 := 0, f1 := 1, and for each n ≥ 2, fn := fn−1 + fn−2

From this, we can compute the sequence: 0,1,1,2,3,5,8,13,21,34,...

But what is, say, f100, or f100000? How fast do these grow? We seek a closed form expression for the
values fn, a formula in terms of n itself.

We will be concerned with linear recurrence relations with constant coefficients, particularly homo-
geneous ones.

Here are some simple examples we can quickly solve by hand:

a) A savings account earns 1% interest compounded annually. Let a0 be the initial amount in
the account and for each n ∈ N, let an be the amount in the account after n years.

a) If you know an−1, what is an? (What is a recurrence relation for an in terms of an−1?)

b) Starting with a0, using the recurrence relation to find a1, a2, etc, what is the closed form
for an?

b) (The same thing) One thousand liters of preservative are in an indusrtrial tank. Each minute
one third of the remaining preservative is removed. Let sn be the amount of preservative
remaining after n minutes. Give a recurrence relation for sn in terms of sn−1, and give the
closed form for sn.

c) (The same thing) A calculation processes a string of length n and solves some sort of puzzle
in Tn seconds. Each additional letter doubles the amount of time the calculation takes. Give
a recurrence relation on Tn in terms of Tn−1, and a closed form expression for Tn in terms of
T0.
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7.1 Homogeneous linear recurrences with constant coefficients

Rather than stating the general theorem for homogeneous linear recurrence relations, we’ll use
examples:

Suppose
an = an−1 + 6an−2, with initial conditions a0 = 1, a1 = 4

The sequence begins 1, 4, 10, 34, 94, 298 ... But what is the 100th term? A formula for the nth
term? How fast do these grow?

We rewrite the recurrence as
an − an−1 − 6an−2 = 0

The characteristic polynomial of this relation is

x2 − x+−6 = 0

which factors as x2 − x+−6 = (x− 3)(x+ 2) with roots x = 3,−2.

The closed form solution to the relation will be

an = A 3n +B (−2)n

with A and B depending on the initial conditions of the relation a0 = 1, a1 = 4

When n = 0, we have a0 = 1 = A 30 +B(−2)0 = A+B.

When n = 1 we have a1 = 4 = 3A− 2B. Solving the system of equations

1 = A+B
4 = 3A− 2B

we find that A = 6/5 and B = −1/5. We thus have

an =
6

5
3n − 1

5
(−2)n

Checking the first few values we verify that this is correct!

This process works for any homogeneous linear recurrence relation for which the roots of the char-
acteristic polynomial are distinct.
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1. Suppose bn = bn−1 + 2bn−2 with b0 = 3, b1 = 0. Give a closed form expression for bn.

2. Suppose cn = 4cn−2 with c0 = 4, c1 = 4. Give a closed form expression for cn.

3. (higher degree) Suppose dn = 2dn−1 + 5dn−2 − 6dn−3 with d1 = 1, d2 = 4 and d3 = 10. Give a
closed form expression for dn.

4. (irrational roots) Suppose en = 2en−1 + en−2 with e0 = 0 and e1 = 1. Give a closed form
expression for en.

5. What is a closed form for the Fibonacci numbers?

But if a root is repeated, we must add additional terms to our general solution. Again, we demon-
strate by examples:

Suppose
an = 6an−1 − 9an−2, a0 = 1, a1 = 9

Our polynomial is x2 − 6x + 9 = (x − 3)2 and the root x = 3 is repeated twice. The general
solution will be of the form an = (An+B) 3n, and we solve for A and B as before, using our initial
conditions.

Similarly, for bn = 9bn−1 − 27bn−2 + 27bn−3 the characteristic polynomial is x3 − 9x2 + 27x− 27 =
(x − 3)3; the root x = 3 is repeated three times, and the general solution will be of the form
an = (An2 +Bn+ C) 3n, and once our initial conditions are specified, we could solve for A,B,C.

6. Solve an = 4an−1 − 4an−2 with a0 = 4, a1 = 6.

7. Solve bn = 3bn−2 + 2bn−3 with a0 = 3, a1 = −1, a2 = 8. (You can use Wolfram Alpha or some
other symbolic calculator to help with the factoring).

8. Here are some more for practice:

(a) an = 6an−1 − 8an−2, a1 = 6, a2 = 16.

(b) bn = bn−1 + 2bn−2, b0 = 2, b1 = 1.

(c) cn = 2cn−1 − 2cn−2 with c0 = −2, c1 = −1. This has complex roots, but it works in just
the same way.

(d) dn = 6dn−1 − 9dn−2, with d−1 = 0, d0 = 2.

(e) en = 2en−2 + 3en−4, e0 = 5, e1 = 0, e2 = 11, e3 = 0.

(f) fn = 4fn−1 − 4fn−2 with f0 = 4, f1 = 8.

(g) gn + 5gn−1 + 8gn−2 + 4gn−3 = 0, g0 = g1 = g2 = 0.
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9. Give a recurrence relation, including initial conditions, for sn, the number of strings of the
letters 0 and 1 in which no two 0’s are adjacent.

10. Give a recurrence relation, including initial conditions, for rn, the number of strings of the
letters A, B, C where the substrings AC and CA do not appear. Using the recurrence relation,
how many such strings of length 10 are there?

11. Let sn be the number of ways to select squares from a 2×n grid, so that the selected squares
form a connected region, reaching both ends of the grid. As discussed,
sn = 2sn−1 + sn−2.

(a) Solve the recurrence relation (you will need the initial conditions).

(b) Use the closed formula you found in (a) to find the exact integer value of s16.
21

12. (a) Give a recurrence relation for the number of ways tn to fill a 2× n grid with 2× 1, 1× 2
and 2× 3 blocks, including initial conditions.

(b) Using the recurrence relation, how many ways are there to tile a 2× 10 grid?

7.2 Non-homogeneous linear recurrences with constant coefficients

A non-homogeneous linear recurrence relation has, in addition, some function of n, such as:

an = 2an−1 + 3n, a0 = 6

bn = 3bn−1 + 4bn−2 + n, b1 = 2, b2 = 5

cn = 4cn−2 + 1, c0 = 0, c1 = 3 (1 is a function of n— the constant function!)

dn = 4dn−1 − 4dn−2 + 2n, d0 = 1, d1 = 4

The idea is that our solution will have two pieces: the solution to the original homogeneous re-
currence, and an additional, “particular” term that that looks similar to the additional term. For
example, for an, the homogeneous recurrence is denoted a

(h)
n = 2a

(h)
n , with a solution of the form

a
(
nh) = A2n. The additional term is 3n and so we guess a particular solution a

(p)
n = B3n.

We try to solve for the particular solution first, ignoring the initial conditions.

a
(p)
n = 2a

(p)
n−1 + 3n

21You will need to take powers of numbers of the form a+
√
b; work out (a+

√
b)2, then ((a+

√
b)2)2, etc.
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B3n = 2B3n−1 + 3n. Plugging in n = 1 we have

3B = 2B + 3 and so B = 3, and a
(p)
n = 3 · 3n = 3n+1.

Our general solution is of the form an = a
(h)
n + an(p) = A2n + 3n+1.

Finally, we use the initial condition a0 = 6 to solve for A. We have 6 = A20 + 31 and so A = 3.
Finally an = 3 · 2n + 3n+1.

If the additional term is

• a constant, guess an unknown constant;

• a polynomial, guess an unknown polynomial of the same degree;

• an exponential bn, guess an unknown multiple of that exponential — if b is not already a root
of the char. polynomial.

• a polynomial multiple p(n)bn, guess an unknown polynomial multiple of the same degree,

• an exponential bn where b is a root, guess a multiple of nkbn where k is the multiplicity of the
root, 22

• a polynomial multiple p(n)bn where b is a root, guess a polynomial multiple, bumping up the
degree. 23

13. Solve the recurrences given above, filling in your own initial conditions.

14. Solve the following recurrence relations; you should try out a few terms by hand, to be able
to check your solution.

(a) an = 5an−1 − 6an−2 + n, a0 = 2, a1 = 5.

(b) bn = 5bn−1 − 6bn−2 + 4n, b0 = 2, b1 = 5.

(c) cn = 5cn−1 − 6cn−2 + 3n, c0 = 2, c1 = 5.

(d) dn = 5dn−1 − 6dn−2 + 1 + 3n, d0 = 2, d1 = 5.

15. Ned pays $150 per month on a credit card loan of $10,000, with an annual interest rate of
24% compounded monthly (so 2% per month, or 26.824% APR). Let pn be the amount he
owes on the card after n months.

22Don’t be fooled if the additional term is a constant, b, which also a root. So what! We are not in this special
case, with an additional term of the form bn. The additional term is just a constant, so guess a constant.

23On the other hand, there is a sneaky sub-case if one of the roots is b = 1. Any additional term P (n) is actually
of the form P (n)1n, and the additional term actually is in this special case. The degree of our particular solution
will be increased by the multiplicity of the root 1.
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(a) Give a recurrence relation for pn.

(b) Solve this recurrence relation.

(c) After how many months, if ever, will Ned pay off the debt?

(d) Changing the payment, what is the maximum payment that Ned can make and never
pay off the debt? (What payment keeps the principal constant)?

(e) What should the payment be to pay off the debt within 36 months?

16. Consider the number sn of strings of length n from letters A, B, C, in which there are an
odd number of A’s. The strings of length n with an odd number of A’s either end in a B

or C, and are therefore twice as numerous as those of length (n − 1); or end in an A and
therefore correspond to the strings of length (n − 1) with an even number of A’s. We can
count those as the total number of strings, less the ones with an odd number of A’s. Therefore
sn = 2sn−1 + (3n−1 − sn−1) or

sn = sn−1 + 3n−1

Solve this recurrence relation.

17. The recurrence an = an−1 + n with a0 = 0 gives the triangular numbers, 0, 1, 3, 6, 10, .., an =

(n2 +n)/2, ... These are not of the form an = a
(h)
n + a

(p)
n where a

(h)
n is some multiple of 1n and

a
(p)
n is some guess Cn+D. What has gone wrong?

18. Solve the recurrence an − 3an−1 + 3an−2 − an−3 = 0 with a0 = 0, a1 = 1, a2 = 8. Calculate a
few more terms of the sequence using the recurrence and check your solution is correct.

7.3 Generating functions and recurrence relations

Next, we will see how to obtain a generating function from a recurrence; we’ve already seen how
to work out what sequence a generating function generates, so this gives another way to solve a
recurrence relation.

And the reverse holds as well: given a generating function, we can often read out a recurrence
relation!

19. Suppose a sequence cn happens to have generating function
∑

cnx
n =

2x− 1

(x− 1)(x+ 5)
. Find

a formula for cn: first find values A and B so that
2x− 1

(x− 1)(x+ 5)
=

A

x− 1
+

B

x+ 5
— but then these are geometric series, and you know their coefficients. What is each cn?

20. Similarly, what sequences are generated by these generating functions
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(a) 1/(1− x2), in two ways

(b) x−7
x2+x−2

(c) x+2
1+x−2x2

(d) 1
1−x−x2

21. Let’s find generating functions from recurrence relations. We’ll begin with a familiar case:

(a) Let A be the ogf for the sequence defined by the recurrence relation

an–3an−1 = 0 with initial condition a0 = 4

• Write out the series A–3Ax, gathering up terms with the same power of x.

• Apply the recurrence relation to simplify A–3xA (dramatically).

• Solve for A, writing A in closed form.

(b) Let B be the ogf for the sequence defined by the recurrence relation

bn–3bn−1 + 2bn−2 = 0 with initial conditions b0 = 4, b1 = 3

• Write out the series B–3xB + 2x2B, gathering up terms with the same power of x;

• apply the recurrence relation to simplify B–3Bx+ 2Bx2;

• and solve for B, writing B in closed form.

(c) Let C be the ogf for the sequence defined by the recurrence relation

cn–3cn−1 + 2cn−2 + 7cn−3 = 0 with initial conditions c0 = 4, c1 = 3, c2 = 1

• Write out the series C(1–3x+ 2x2 + 7x3), gathering up terms with the same power
of x;

• apply the recurrence relation to simplify C(1–3x+ 2x2 + 7x3);

• and solve for C, writing C in closed form.

(d) Give a closed form of the generating function of the sequence (zn) satisfying c0an +
c1an−1 + ...+ ckan−k = 0, with initial conditions z0, ..., zk−1.

22. Here’s a nice application of this idea. The Fibonacci numbers satisfy the recurrence fn =
f(n−1) + f(n−2) for n ≥ 2, with f0 = 0, f1 = 1. We will prove that for any counting number n,

fn = f(n−2) + f(n−3) + f(n−4) + ...+ f0 + 1

(try it!) in the following manner: First find the generating function F for the the Fibonacci
numbers using the recurrence. Next, find the generating function for the sequence on the right
(fudging the first two terms):

0, 1, 1 + f0, 1 + f0 + f1, 1 + f0 + f1 + f2, ..., 1+
n−2∑

f, ...

The generating function of that sequence is the sum of the generating functions of

0, 1, 1, 1, 1, ...
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and the shift of the summation of the Fibonacci sequence.24 With a little algebra show this
is equivalent to F .

23. On the other hand, suppose that a sequence (fn) has a generating function F (x) = 3/(1−2x).
Give a recurrence relation on (fn). What are the initial conditions on F?

More generally, suppose R(x) = P (x)/Q(x) where P and Q are polynomials with integer
coefficients and the degree of P is less than the degree of Q. What is a recurrence relation on
the sequence (rn) generated by R?

In fact, the generating function of a sequence is rational (in other words, the ratio of two
polynomials) if and only if the sequence has a homogeneous linear recurrence relation with
constant coefficients— and if and only if the sequence is a linear combination of exponentials
of roots of a polynomial. These are very common, and also very special.

24. We can also find the generating function for sequences with inhomogeneous linear recurrence
relations with constant coefficients. Let’s work through an example, finding the generating
function for the recurrence

an − 2an−1 + 3an−2 = n2, with a0 = 1, a1 = 3

(a) First, we will need (in closed form) a generating function for the sequence (qn) =
0, 1, 4, ..., n2, .... But we’ve seen this before, in Section 5, as Exercises b) and 15. What
is a generating function for the sequence qn = n2?

(b) Next, let f(x) = a0 + a1x + a2x
2 + ... =

∑∞
0 akx

k be a generating function for an. You
will put this in closed form. Since an − 2an−1 + 3an−2 = n2, you may write

(a2 − 2a1 + 3a0)x
2

+(a3 − 2a2 + 3a1)x
3

+(a4 − 2a3 + 3a2)x
4

...

 =


22x2

+32x3

+42x4

...


On the left side, we are close to having some small polynomial times f(x), and on the
right, pretty close to having Q(x). Add in the missing terms, relating f(x) to Q(x), solve
for f(x), and give a closed form expression for f(x).

25. Repeating this process for bn = bn−1 + 3n, b0 = 2, (a) give a closed form generating function
and (b) a formula for bn.

26. Consider the regular language, strings of A’s and B’s, in which AB may not occur, and each
string must begin with a A. The number wn of words25 of length n in the language is exactly
wn = start · transitions(n−1) · end where start is the row vector (1, 0); end is the column

24Remember that we know how the shifting and summation of a sequence affects its generation function.
25Ok wait, if you think about this for a moment, you already know this number; but let’s watch this process unfold

in a case we already understand.
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vector

(
1
1

)
; and transitions is the 2 × 2 matrix

(
1 0
1 1

)
encoding which letters may

follow which. Note that multiplying any matrix by start on the left and end on the right
gives the sum of the first row (try it!).

Now for a little magic: The generating function26

f(x) =
∑∞

0 wnx
n =

∑∞
1 (start · transitions(n−1) · end) xn

= x start · (
∑∞

0 transitionsnxn) · end
= x start · (I − x transitions)−1 · end

That’s pretty neat! Moreover, the denominator has the same coefficients as a recurrence
relation, in reverse order! Taking the inverse of (I − x transitions):

(a) Give a closed form generating function for f(x), (b) a recurrence relation (with initial
values) and
(c) an exact formula for wn.

In the graph at right, let pn be the number of paths of length n that
start at A and end at B. Following the same procedure, (a) give a closed
form generating function for the number of strings of length n; (b) a
recurrence relation using its denominator, and (c) a closed formula for
pn.

a b

26In this example, we are counting the number n of vertices we pass through — a path of length n − 1, why we
count these as transitions(n−1) in the first line. In the second line we reindex, pulling an x to the fore, and finally
we apply a magic identity, that

∑
Anxn = (I −Ax)−1, so long as the latter is invertible.
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8 Pólya enumeration

We want to count distinct colorings up to some symmetry.

For each symmetry g, in a “group” G, and each coloring c ∈ C, let gc be the coloring c transformed
by g. Two configurations c and c′ are “equivalent up to symmetry” if c′ = gc for some g ∈ G.
The axioms defining a group assure that this is an equivalence relation27 and we define equivalence
classes ⟨c⟩ = {c′ | ∃g ∈ G st gc′ = c}, the set of configurations equivalent to c under symmetries in
G. We can easily count C but wish to count the number N of equivalence classes {⟨c⟩}.

For each symmetry g ∈ G, we can let |fix(g)| be the number of configurations in C that g leaves
alone. Then

Burnside’s Lemma states that

N =
1

|G|
∑
g∈G

|fix(g)|

Let’s use the following example as an application, and to sketch the proof.

Here we want to count the number of ways to color the vertices of a rectangle (let’s call them
1,2,3,4) with two colors, perhaps Yellow and Blue, up to symmetry.

It’s easy to count the number of colorings, regardless of symmetry, the set C, shown below: there
are 24 colorings in C. (More generally, if there were k colors and n choices we would have kn

colorings in C.)

27There is an identity i for which ic = c for all c, so each c is equivalent to itself. For each g ∈ G there is an inverse
g−1 with g g−1 = i; thus if gc′ = c for some g, then g−1c = c′ and c is equivalent to c′ if and only if c′ is equivalent
to c. Finally, every group G is closed under its operation, here composition. In other words, if g1, g2 are symmetries,
so too is g1 followed by g2, written g1g2. Consequently, if c is equivalent to c′ and c′ is equivalent to c′′ then c is
equivalent to c′′ because there must be g1, g2 with c = g1c

′ and c′ = g2c
′′, and so c = (g1g2)c

′′.
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But it is difficult to count the number of colorings that are distinct up to symmetry, and that’s
our goal. In this example, the colorings C are organized into columns: colorings are in the same
column if they are the same up to symmetry. Each column is an equivalence class up to symmetry.
We want to count the number of these columns, N— without actually trying to list them!

Burnside’s Lemma shows the way:

Applying the lemma

The symmetry group of the rectangle has four elements, i, h, r, v: do nothing, flip across a horizontal
axis, rotate 180◦, flip across a vertical axis, respectively. If we label the vertices 1,2,3,4 as shown,
the group acts by these permutations:

1 2

4 3

2 1

3 4

3 4

2 1

4 3

1 2

i v r h

(1)(2)(3)(4)
the identity

(12)(34)
flip w 

vert axis

(13)(24)
180°

rotation

(14)(23)
flip w 

horz axis

For the lemma, we need to understand what are the number of configurations fixed by each group
element. For example,

fix(r) = {
, , ,

}

and every configuration is fixed by i. It is relatively easy to count the number of elements fixed
by a given group element: we really just need to know how many cycles there are of the things we
wish to color. Each cycle will have exactly one color, and the colors of the cycles can be chosen
independently.

For r there are two cycles: (13) and (24). The vertices 1 and 3 must be the same color and so too
must the vertices 2 and 4. There are k = 2 colors and n = 2 cycles so

|fix(r)| = 22

Similarly for i there are four 1-cycles, and with two colors, |fix(r)| = 24.
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• Check that |fix(h)| and |fix(v)| are both also 22

• Count up
∑

g∈G |fix(g)|

• Divide by |G|, and obtain N .

1. Answer each of the following. In each, there are several subproblems to take care of:

• What are the objects to be colored? How many colors are there?

• What is the symmetry group? How many elements does it have?

• For each symmetry acting on the objects, how many cycles does it have?

• Consequently, for each symmetry g, what is |fix(g)|,the number of colorings
fixed by g?

How many ways are there to color, up to symmetry,

(a) the vertices of a rectangle with any of three colors? seven colors? 47? 27,637, 1221577

(b) the edges of a rectangle with any of three colors? 36

(c) the vertices and the edges of a rectangle with any of two colors? 84

(d) the vertices of an equilateral triangle with any of three colors? 10

(e) the vertices of a square with any of three colors? 21

(f) the eight vertices, the four short edges and the four long edges of a truncated square,
with any of three colors? How many if the vertices are chosen from any of three colors5391522,**
and the edges from any of four colors?

(g) the vertices of a regular pentagon with any of three colors? 39

(h) the vertices of a cube with any of three colors? 333

(i) the faces of a cube with any of three colors? 57

(j) the edges of a cube with any of three colors? 22815

We turn to a

Sketch of a proof of Burnside’s Lemma

(A real proof must explicitly use that the symmetries form a “group”, a particular, important
algebraic structure.) Remember that we can easily count the total number of configurations in C,
but cannot easily count their equivalence classes under the action of G, shown as columns in the
diagram.
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Each coloring in C is “stabilized” under certain elements of G, elements g ∈ G that do not change
c, for which gc = c. That is, for each c ∈ C, let stab(c) := {g ∈ G | gc = c}. For each c, at least we
can be sure that i ∈ stab(c), and there may be more besides. In this diagram, for each c, a copy is
drawn for each g ∈ stab(c).

i,v

i,v

i,h

i,h

i,r

i,r

i i

i,v,r,h i,v,r,h

Notice that there are now |G| configurations in each column, and also that in each column, each of
the colorings has the same size stabilizer. In other words, the size |⟨c⟩| is well-defined and doesn’t
depend on the representative c.

In other words, we observe (and in general, prove, using group theory 28 ), that for each equivalence
class

|⟨c⟩| · |stab(c)| = |G|

Consequently, there must be N |G| configurations in the diagram.

But let’s count the configurations a different way. Remember that for c ∈ C, and each g ∈ stab(c),
a configuration is shown. That is, there is a configuration for exactly each of the pairs g, c, g ∈ G,
c ∈ C with gc = c. To put this the other way round then, there is a configuration for each g ∈ G,
and for each c ∈ fix(g).

In other words, dividing through by |G|,

N =
1

|G|
∑
c∈C

|stab(c)| = 1

|G|
∑
g∈G

|fix(g)|

and we are done.

28Proof: Show that stab(c) is a subgroup, and next that there is a well-defined bijection from its cosets to ⟨c⟩.
Consequently, for each c′ ∈ ⟨c⟩, |stab(c′)| = |stab(c)| and |stab(c)| · |⟨c⟩| = G
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8.1 Cycle index

You have noticed that there is no real difference at all between counting the number of vertices of a
rectangle with any of 2 colors versus any of 4 colors, versus any of 12 or any of 481. 29In each case,
the real work is figuring out, for each group element, the pattern of cycles it forms. In the cycle
index we write this down as a distinct step, with an aim towards recording more subtle information.

The cycle index will be a kind of generating function, a polynomial P with variables x1, x2, ....
Each variable xk will stand in for cycles of length k.

Again let’s color the vertices of a rectangle. The identity symmetry i has cycles (1)(2)(3)(4), four
1-cycles, which we record as x1 · x1 · x1 · x1 = x4

1.

The symmetries h, r, v all happen to have two 2-cycles, and each contribute x2
2. The cycle index is

the defined to be sum of these terms, divided by the number of symmetries in G:

P (x1, x2) =
1

4
(x4

1 + 3x2
2)

This may not look like much of an advance, but it is. Notice first that the number of distinct
colorings with two colors is P (2) = 1

4
(24 + 3 22) = 7, found by setting each xi in P to 2.

But this works in general: with the cycle index in hand, we can instantly answer how many distinct
colorings are there, of the vertices of a rectangle by k colors, found by setting each xi in P to k,
giving P (k) = 1

4
(k4 + 3k2).

2. What is the cycle index of

(a) the vertices of a rectangle?

(b) the edges of a rectangle?

(c) the vertices and the edges a rectangle?

(d) the vertices of an equilateral triangle?

(e) the vertices of a square?

(f) the vertices of a regular pentagon?

(g) the 8 vertices and the 8 edges of a truncated square?

29WAIT: We are not counting the number of colorings with exactly two colors, or three, or twelve. In general,
P.I.E. will be needed to count these. Here we are counting the number of colorings with any of k colors.
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(h) the vertices of a cube?

(i) the faces of a cube?

(j) the edges of a cube?

8.2 Pattern inventory

With the cycle index in hand, we can do much more, answering, for example, the number of colorings
with specified numbers of colors. (A symbolic calculator, such as Wolfram Alpha or Mathematica
will be helpful.)

• Quick, by hand, how many ways are there to color the vertices of a rectangle with one R, two
G and one B, up to symmetry?

Our goal is to cook up a generating function, one variable for each color, whose coefficients count
colorings. For example, with three colors, say R, G, B, we might use variables r, g, b and look for a
polynomial so that the coefficient of rigjbk will be the number of colorings with i R’s, j G’s and k
B’s.

But it is easy!!

In a k-cycle, all of the vertices must be the same color, say R, but that color will therefore appear
k times. Replacing xk with rk will contribute k r’s to the polynomial, representing k R’s in the
pattern. And that’s the entire trick.

For the vertices of the rectangle, the cycle index is P (x1, x2) =
1
4
(x4

1 + 3x2
2).

With colors R,G,B, each x1 (there are four!) will be replaced with one of r1, g1, b1. This is perfectly
captured by replacing each x1 with (r1+ g1+ b1). In the same way each x2 corresponds to a 2-cycle
and will contribute two R’s or two G’s or two B’s, or r2, g2, b2 to the polynomial. This is perfectly
captured by replacing each x2 with (r2 + g2 + b2).

For these three colors, we have the pattern inventory

P (
∑

s1,
∑

s2, ...) =
1

4

(
(r1 + g1 + b1)4 + 3(r2 + g2 + b2)2

)
where each sum is over the variables for the colors s = r, g, b.
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Expanding this, we have

= 3b2g2 + 3b2gr + b3g + 3b2r2 + b3r + b4 + 3bg2r + bg3 + 3bgr2 + br3 + 3g2r2 + g3r + g4 + gr3 + r4

This is a mess, but the coefficients exactly record the number of colorings. For example, there are
exactly three ways to color a rectangle with one R, two G’s and one B and the coefficient of rg2b is
indeed 3. !!

And setting all of the variables to r, g, b = 1, the polynomial sums to 27, exactly P (3), the number
of three colorings.

For each, find the pattern inventory and then, using Wolfram Alpha or another symbolic calculator,
find how many ways are there to color, up to symmetry,

3. (a) the vertices of a rectangle with two W, two G. 3

(b) the vertices of a square with one R, two G, one B. 2

(c) the vertices of a regular pentagon with two R, two G, one B. 4

(d) the eight vertices of a cube with four W, four G. 7

(e) the eight vertices of a cube with two W, six G. 3

(f) the six faces of a cube with any three R, three Y. 2

(g) the twelve edges of a cube with four each of three colors. 1479

(h) the 8 vertices and the 8 edges of a truncated square, with four each W, X, Y, Z. 7884456
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