
You will need:
• A good, working compass
• A straightedge
• A pad of drawing paper
• Sharp pencils
• Your own printed copy of 
Euclid’s Elements

• An inquisitive mind

Euclid’s Elements @





Draw and write all 

over these notes!

What’s the proof 
this really works?

Draw it yourself!

HEY!

Better keep your

notes organized!
YO!

Let’s start right o�: How can you construct a perfect equilateral 
triangle using your straightedge and compass?  

1

2

Given a pair of points:

This neat drawing comes up when you draw the circles all the way round.  

It has the very old Latin name of vesica pisces, which means “fish bladder”

(I don’t know what a fish bladder is supposed to look like.  Do you?) 

Something cool to draw while 
making an equilateral triangle:
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Can you see how to use this to construct a perfect hexagon?

Draw these in your notebook!

Make something cool!

What’s the coolest thing you can construct in your notebook?

Can you keep on going?

Draw more!
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What can you do with a compass?

Given a pair of points, you can draw a
 circle centered at one, passing through 

the other.  

What can you do with a straightedge?

Given a pair of points, you can draw a
 line, passing through each.  

But Euclid’s compass is a little di�erent: it’s floppy, like a piece of string!  Once 
you pick it up, it collapses.  You can only draw a circle if you are given a 
point that lies on it, just as illustrated in the box at the top of this page.

Does this make a di�erence?  If we had to use a floppy compass would there be 
things we couldn’t do with a rigid one?

A subtle bonus observation:
 
A real compass, of the sort we use today, can do a little more than this.  You can 

measure with it too, setting the radius of your circle and centering it where 
ever you please.

Given:

Given:

Euclid’s Tools

Given:

radius center
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3
4

5

1 2

What’s the proof 
this really works?

I mean always works?

Try it yourself!

Given:

center

radius

And voilà!
A circle with the given
center and radius,
made with Euclid’s 
floppy compass!

Right o�, though, Euclid shows that’s just as good!  (Book I, Proposi-
tion 2) Anything your compass can do, his compass can too, with 
just a few extra steps.  What’s really cool is he uses an equilateral 
triangle to do it!  Here’s his method: 

Theorem: Given any center and any radius, Euclid’s tools can make a circle with 
that center and that radius.

A floppy compass is just as good as a rigid compass!  

PAGE 4



Step-by-step instructions for constructing a square
— but why do we really obtain a polygon with four
equal sides and four right angles?
What do we need to use to be able to say this?

Practice drawing this!

1 2

3 4

5
6

Given:
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Mysterious Constructions!

Will this make a square?  

Will this make a square?  

How about this?

(Olin O-S, 2014)

Will this make a square?  

Can you prove it?



The Rules of the Game  

(Most of them at any rate)

Postulate: Given any two points, you can 
draw a circle centered at the first point, 
passing through the other point.  (You 
can do this with your compass!) 

Definition: All the points on a circle are 
the same distance from its center.

Postulate: You can draw a line through 
any two given points, and you can extend 
a line as much as you like.  (You can do 
this with your ruler.)

Definition: A right angle is defined in a 
funny way: if a line hits another line, 
making two angles that are equal to each 
other, these are, by definition, right 
angles.

Postulate: You can assume all right angles 
are equal to each other.

We won’t need Euclid’s Fifth Postulate 
until Proposition 29, but let’s spell it out 
now!
Postulate: If two lines meet a third, and 
the interior angles sum to less than two 
right angles, the two lines must meet 
somewhere.  

Given:

Given:

Euclid’s genius was to spell out the rules of the game.  How can we prove, for sure, 
that a claim must be true?  We start with some basic definitions and postulates, 
which we assume must hold.  From these, we build up more and more true facts, 
theorems, which themselves become building blocks for even more facts!

 

&

(We didn’t have room to 
show where they meet!)
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Our goal is to build up theorems using the postulates and earlier theorems as building 
blocks!

We’ve already shown how to construct an equilateral triangle and prove what we construct-
ed really is an equilateral triangle like we said it is!
 

Euclid’s Proposition 1.1 Given a segment, construct an 
equilateral triangle upon it.

Prove this is really an equilateral triangle!

1.2 Given a center and a radius, construct a circle with that center and radius using a floppy 
compass.  

Prove your circle really has the right radius!

1.3 Given a longer line segment and a shorter one, cut the length of the shorter one o� of 
the longer one.

Prove this works!

1.4 (SAS) Suppose two triangles have a pair of matching sides, and a matching 
angle between them.  Then the triangles are equal (all sides and angles match).

Do you believe this?  What is the proof?
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Let’s Prove Some Stu�!

Given:

radius center

Given:

longer

shorter snip!



Q: Two triangles are equal if the sides each match and all the angles each match.  We 
could write this as saying ASASAS (angle, side, angle, side, angle, side) all match on the two 

triangles.  

But what if less information is given?  

If all the sides match (SSS), do the angles have to match 
too?  See if you can draw two triangles that have all the 
same lengths of side, but somehow the angles are di�erent.  

Try it!

If two sides and one of the angles match, must the other side and the other two angles 
match too?
 
(Does it matter if the matching angle is between the two matching sides — SAS — or next 
to one of them — SSA?)

What if all the angles match — do the sides need to match also (AAA)?

What if two angles match and one of the sides?  
Does it matter if the matching side is between the two matching 
angles — ASA — or next to one of them — AAS?

In other words, which of these are probably theorems?

SSS     SAS     SSA        AAA    ASA    AAS
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Before we go on, we should ask ourselves what is likely to be true?  

draw a bunch of triangles &

make some guessesHEY!
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Here are the next few: Can you prove these?

I.5 If a triangle has two sides equal, then the oppo-
site angles are equal.

1.6 Conversely if a triangle has two angles equal, 
then the opposite sides are equal.

 
Let’s prove Prop 1.5 that if two sides of a triangle are equal, 
the opposite angles are equal as well.  All we need is to
use SAS, over and over!
 

Proof: Given a triangle with two sides equal, extend the sides an 
equal amount and connect as shown

Q: Then why must these two triangles also be equal?
What angles and segments must be equal since these
triangles are?  Mark this on the diagram!

Q: Then why must these two triangles also be equal?
What angles and segments must be equal since these
triangles are?

Finally, knowing what we know
about which angles are equal so far,
how do we finish the proof of the theorem?



(Edges of the same color are supposedly the same length.) 

1.7 & 1.8 (SSS) If all three sides match between a pair 
of triangles, all the angles match as well.

We can line the two triangles up; if SSS isn’t true, we’d have 
a picture like this one at right.  So all we really have to do is
to prove this picture is impossible.

Hint: Connect the top points.  We have two “isosceles” triangles.

What do we know about their angles?

Which of these angles must be larger if the diagram is legitimate?

Conclusion: Ooops!  The diagram couldn’t
be legitimate.  This can’t happen.  The triangles
must have been equal to begin with.
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Let’s assume that SSS is true. 
(We will prove this soon, but let’s see what it can give us now.)
So we can use 1.4 (SAS), 1.5 (isosceles triangles have equal angles on the base) and SSS (1.8)

1.9 Bisect an angle.

1.10 Bisect a segment.

Prove that this works:

Prove that this works:
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Theorem (not in Euclid): 
Opposite angles on a rhombus are equal, 
and the diagonals bisect each other and meet at right angles.  

&

Proof: Draw the diagonals.
As we proceed, mark what
angles we know must be equal.  

Why are these triangles isosceles?
What does that tell us about their angles?
Why does that tell us they are equal?
Finally, how can we conclude the top and bottom
angles in the rhombus must be equal?

Using the same argument, show
the left and right angles in the
rhombus must be equal.

1.11 Construct a perpendicular to a given segment at a given point 
     — and prove your construction always works!
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And why must the diagonals bisect each other?

Finally, why are these smaller triangles all 
equal, and how does that tell us that the 
diagonals must bisect each other and meet 
at right angles?  



I.13, I.14: The sum of two supplementary angles equals two right angles (not a big 
deal: construct a perpendicular using 1.11, then arithmetic).  Conversely, if two adja-
cent angles sum to two right angles, they lie on a straight line.

I.15: Vertical angles are equal.
 (The proof is arithmetic, using 1.13.)

I.16  In a triangle, consider two angles opposite to a third; then either of the two 
angles is less than the supplement of the third.  (Let’s see a picture!)  Even though 
this theorem doesn’t say very much, its proof isn’t very long, and the theorem is an 
important stepping stone.  
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&

More Euclid!

This is a surprisingly powerful theorem and has a very clever proof!
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The Triangle Inequality, and how to 

construct a triangle given its sides:

Euclid 1.20 is the famous Triangle Inequality:  

If the sides of a triangle have lengths A, B, and C

A+B must be less than C, 

B+C must be less than A,

C+A must be less than B.  

And Euclid 1.22 tells us how to construct a triangle with three specified side lengths

(if they satisfy the triangle inequality).  For practice, construct a triangle with these three

side lengths:

In order to pull this o�, Euclid uses 1.19, which uses 1.18, which uses 1.16.  

If then 

If 
then 

1.18 

1.19



1.26 ASA, AAS!
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We’ve seen

SAS (Proposition 1.4)

SSS (Propositions 1.7 & 1.8)

AAA is just false.  SSA is also false, but a little surprising how.  
That just leaves ASA and AAS: Proposition 1.26.

A curious note: Euclid groups ASA and AAS together and waits until Proposition 26
to get around to proving these are true.  But if you look closely, his proof of ASA could
have been given any time after Proposition 4 — I wonder why he waited so long!



And then we’re ready to begin talking about parallel lines!  This is a big step, for it is 
the first time we’ll be using the mysterious fifth postulate.  All the theorems so far 
hold in any geometry that satisfies just the first four postulates: on the sphere, the 
plane, and the hyperbolic plane.  But once we use the fifth postulate, our results hold 
only in the plane.

Theorems 27, 28, 29:

the lines are parallel
(never meet)

Theorem 31:  How do you construct a line,
through a given point,
parallel to another given line?
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More Theorems that Require the Fifth Postulate

From these we’ll  be able to prove some facts that only hold in the Euclidean plane, where 
the fifth postulate holds.  (They don’t hold in non-Euclidean geometry!)

1.32 The sum of interior angles of a triangle equals two right triangles.

If all sides of a quadrilateral are equal and one interior angle is a right angle, then all angles 
are right angles and the quadrilateral is a square.  (We needed this on the first day, when 
we claimed we had really constructed a square!)

I.33 Opposite sides of a parallelogram are equal, and the diagonal of a parallelogram 
divides it into two equal parts.

I.47 The Pythagorean Theorem!!

opposite sides parallel
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Parallelograms with equal bases, between the same parallel lines, have the same area.

A hint of the proof.  We begin with:

Why are these two large triangles equal?

Once we prove that opposite sides of a parallelogram are equal, we can prove:

What do we need to add and subtract from the triangles to get the area of each parallelogram?  

A Very Cool Proof
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Euclid’s Proof of the Pythogorean Theorem (1.47)

We will show that the shaded regions have the 
same area, using three theorems:

• A diagonal bisects a parallelogram into two 
equal areas.

• Parallelograms with the same base and 
between the same parallels have the same 
area.

• SAS.

We’ll give the argument for just one of the areas: 
the argument for the other is exactly the same.

Why is each step valid?

SAS
is used here

Why are the
two triangles
marked *
equal?

*

*

Here is another proof, known in China 2000 years ago; the Hindu mathematician
Bhaskara simply wrote: 

BEHOLD! he was referring to:

Which of Euclid’s propositions are needed for this proof to be complete?



Any of these could have been taken as the Parallel Postulate and we would have had
the same geometry.

Euclid’s Parallel Postulate:  Given

then the lines must meet.
(Or conversely, if the lines are parallel, the interior angles are at least two right angles)

Playfair’s parallel postulate:  Given

There is a unique line through the given point, parallel to the given line.

Tom’s Postulate: If two lines are parallel, then any two segments between them,
 perpendicular to one of the lines, have the same length.

Any of these can be taken as an axiom and the others proven as theorems.  For example:

Taking Euclid’s postulate, prove Playfair’s and Tom’s.

Taking Playfair’s, prove Euclid’s and Tom’s.

Taking Tom’s, prove Euclid’s and Playfair’s.

with

parallel
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Di�erent Possible “Parallel Postulates”

In any of these, you may use all the theorems that rest on the first four postulates, 
namely Propositions 1–28. 



A quick word about Non-Euclidean geometry.

There is more than one kind of geometry in which the first four postulates hold!  

The most important examples are elliptic geometry, which is the geometry of 
the sphere, and hyperbolic geometry.  

Elliptic Geometry

On a sphere, we can define lines to be great circles 
— circles that cut the sphere in half.  The first four 
postulates work just as well, and all the theorems 
that depend upon them.  We still have SAS, SSS, 
ASA, facts about isosceles triangles, and all the 
constructions we’ve seen so far.  

But there are no parallel lines — every pair of great circles intersect — and we 
have some surprising theorems, such as: The sum of angles in a triangle is great-
er than two right angles.

Hyperbolic Geometry:

We’ll need to take some time to explain hyperbolic 
geometry, but in essence it is the geometry of surfaces 
with a lot more room than in the plane — the surface of 
a wrinkly lettuce leaf is an example.  In hyperbolic 
geometry, there are a great many lines, parallel to a 
given one, through a given point!  And we have theo-

rems like this one: The sum of angles in a triangle is less than two right angles!

One thing that holds in both elliptic and hyperbolic geometry, but not in the 
plane, is AAA — two triangles with the same angles have to be congruent!!

For example, on the sphere can you find a triangle that has three right angles?  
Can tell why any two triangles like this are congruent?
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Euclid’s Construction 
of a Regular Pentagon, 
Given a Circumscribing Circle.

Begin with a circle C with 
center O.  Draw any line OA 
passing through O.  Find 
the midpoint M of segment 
OA.  Draw a perpendicular 
radius OB.

OO AM

C

B

Draw the circle with center 
M, passing through B, and 
let W and V be the inter-
sections of this circle with 
the line OA.  

Once we have V and W, 
construct the circles with 
centers V and W passing 
through O.  The intersec-
tions of these circles with C 
are four of the five vertices 
of the desired pentagon.  
The fifth vertex is our our 
point A.

OO MM

BB

WW VV

OOWW VV

Math 3773 Fall 2010

Prove this works!

1
x

x

x2
x

A 36-72-72° isosceles triangle has both
base angles twice the top.  Subdivide 
into two isosceles triangles as shown.
Taking 1 and x as shown, by similarity
we find that the sides x2  =1+x.

Solve for x.  Can you see how this 
quantity is constructed in our construction?
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Here’s a proof of the Pythagorean Theorem, due to President 
James A.  Garfield (March 1881-Sept 1881):

A full proof requires knowing the area of a trapezoid, which 
is not hard to prove using Euclid Book 1, the area of a triangle 
(which Euclid more or less works out in Book 1), and some algebra, 
which Euclid works out in Book 2.

c
cb

a b

a

The total area of the trapezoid is ½ (a+b) (a+b).
The area of the triangles is ½  ab + ½ ab + ½ c2

Can you use this to show a2 + b2 = c2 ?

Why are all three triangles similar?
(that is, why do they have the same
three angles?)

Draw a perpendicular 
from the hypotenuse 
to the opposite vertex:

x y

a
a

c

b

b

It’s easier for us to follow if we use our familiar notation.  Explain each step:

a / x = c / a
Therefore  a2 / c  = x
Therefore a2 / c2   = x / c

 Meanwhile:

b / x = c / b
Therefore  b2 / c  = y
Therefore b2 / c2   = y / c

Now consider the sum x/c + y/c .  On the one hand   x/c + y/c = (x+y)/c  = ______

On the other hand substituting in, we have x/c + y/c = _______

Finish the proof.

http://www.cut-the-knot.org/pythagoras/index.shtml
There are hundreds!  See:

Later in the Elements, Euclid works out how to deal with ratios (Book 5) and that
corresponding parts of similar triangles are in the same proportion (Book 6).  He
can then give the following proof (Book 6, Proposition 31).
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This is a stunning variation on the proof in Book 4, Proposition 31.  
It relies on the following fact, proven in Euclid Book 4:

Suppose figures A and X are on the equal bases, and  figures 
B and Y are also on equal bases; 
further suppose A is similar to B and X is similar to Y.

Then  (area of A) / (area of B) = (area of X) / (area of Y)

That is, the areas are in the same proportion.

A
B

X

Y

SO: we might as well use a clever 
shape for the proof!

A A

B
B

C

C

areas A+B= C areas A+B= C How does this
complete the proof?

What this means is that if I want to show that the areas 
of the two squares add up to the area of the third, it 
su�ces to show this for any figures that have the same 
bases.
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An Introduction to Book 2

In Euclid’s time, algebra had not yet been invented.  Euclid and others did need 
algebraic facts.  Book 2 of Euclid’s Elements catalogues many clever geometric 
work-arounds for facts more easily handled algebraically.  
Today these remain very nice “proofs by picture.”

For example:

Theorem: (a+b)2 = a2 + 2ab + b2              Proof:

Theorem: (a+b+c)2 = a2 +  b2+  c2+  2ab + 2ac + 2ab              

Proof:

Euclid gives a clever construction of the harmonic mean: 
Given a and b, construct √ab 

Given                                                                   produce a square 
        with the same area:

Proof:
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Case 1

= b2 + c2 
(and apply the 
Pythogorean theorem)

a2 + 2 bc cos A =

A

ab

c

Euclid’s proof of The Law of Cosines (II.13)

a2 = b2 + c2 – 2 bc cos A

Construct the Golden Ratio

ADD
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Case 2
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Some important facts from Book 3 of Euclid’s Elements:

Construct the circle through three given points

Thereom 3.20 is remarkably useful: 
 In any diagram like this one,  angle ABC is half of angle AOC.  What is the proof?  
(This mainly uses Proposition 1.6, that base angles of an isosceles triangle are equal.)

A

B

C
O

A

B

O

Hint: Split into two parts using the diameter
BO.  Look at each part separately.

Do you see a lot of isosceles triangles?

Corollary (Any triangle with vertices on the circle, and 
one side a diameter of the circle, must be a right triangle!  

Can you supply
the proofs?

This theorem has some remarkable corollaries:

(These require the Parallel Postulate!)

(How does this proof 
use the parallel postulate?)
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Can you supply
the proofs?

Corollary (3.21) Incredibly, if angles on a circle subtend the same arc,
they must be equal.

Corollary (3.22) If all the vertices of a quadrilateral lie on a circle, 
then opposite angles must sum to two right angles.

Hint: Use this diagram,
Theorem 3.20,
and the basic fact that
the sum of the internal angles
of a triangle equals two
right angles (1.32).

&



Some facts about circles and triangles.

We have already seen how to construct the circle through three given points: 
(Euclid 5.5)  Construct the perpendicular bisectors to two of the legs of the triangle. 
The point where they meet will be the center of the triangle.

But why does this work?  Given points ABC, construct the
perpendicular bisectors to AB and AC, and let them meet
at point O.  (Why must they meet at all?)

Then we must show that OA, OB, and OC are all of
equal length.  But that’s just a few applications of
the Hypotenuse-Leg Theorem (which follows from the 
Pythagorean Theorem).

Thus, the circle centered at O, passing through one of the 
vertices of the triangle also passes through all three.

Note that this implies, and is implied by:

Every circle through any two given points lies on the perpendicular 
bisector of the segment joining them.

Try this: 

A

B

C

O

A

B

C

Draw a bunch of circles
on the perpendicular bisector
of this segment, passing through
both ends.  

I think this is a pretty cool picture!

The construction also implies an interest-
ing thing: the perpendicular bisectors 
must all meet at a point (the center of 
this circle).  Initially, it’s not clear that the 
perpendicular bisectors couldn’t look 
something like this instead:

Nope

PAGE  32
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Euclid 3.16 tells us that any line tangent to a 
circle at a given point must be perpendicular 
to the radius of the circle at that point.  
We’ll use this for our next construction.

Let’s construct the circle inscribed in a given triangle (4.4).  This is really very pretty:

Construct the angle bisectors of angles ABC and ACB.

Let O be the point where these meet.

From O, construct the perpendiculars to
each of the segments, meeting at points D, E, and F.

The claim is that segments OD, OE, and OF are all equal.

Why is this true?

So the circle centered  at O, passing through one of the points D, E, or F, 
passes through all three of them.

Why must this circle be tangent to the sides of the triangle?

A

B

C

A

B

C

Try the construction yourself.

O

D

E

F
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And we get another interesting observation: 
This implies that all the bisectors of the interior 
angles must meet at a single point.  We can’t 
have a picture like this one.  (Why not?)

This also implies, and is implied by, the following observation: 
If a circle is tangent to two lines that meet, 
its center must lie on the angle bisector.  

Once we have found the center of this circle, a perpendicular from the 
center to a side will meet that side in a point that lies on the circle, 
allowing us to complete the construction. 
 

Try it!
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Another theorem, which is quite nice:

In a triangle, we’ve seen that the perpendicular bisectors of the sides must meet at a point.  

We’ve seen that the bisectors of the angles must meet at a point.

An altitude of a triangle is a segment perpendicular to a side, through the opposite vertex.

Construct the altitudes in this triangle.

Amazingly, all the altitudes must also meet at a single point.

Can you give the proof?

In other words, prove that if
AD and BE are altitudes meeting at a point O,
then the line CO meets AB at a right angle 
(that is, is the other altitude).

C

A
B

X

O

Hint:  This is a classic “Maze” proof.  To start, can you find pairs of right trian-
gles that share an angle?  Chasing this around, you can pair up all six angles at 
the vertices of the triangle.  Finally, how do you show the angle marked X is a 
right angle?
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A “proof” that every triangle is equilateral.

It is remarkably di�cult to spot the error!  If you make a careful drawing by hand or in 
Geometer’s Sketchpad, you will be able to discover where the flaw is.  
Hint: all the triangles that we claim are congruent really are — that’s not the problem.

Given any triangle ABC, we shall prove that AB is congruent to AC.  
Because we may label the vertices however we please 
and the proof will still “work,” this implies that all three sides are
congruent and the triangle is equilateral!

A

B

C

Obviously an equilateral triangle?

A A

B

B

C

C

Begin by constructing the angle bisector of angle BAC and the 
perpendicular bisector of segment BC.  Suppose for contradiction 
that triangle ABC is not isosceles.  Then these lines are not parallel
and meet at some point O.

Clearly O cannot be on segments AB or AC (since O lies on the bisector of the angle between 
them).  And if O lies on segment BC, then the angle bisector coincides with the perpendicular 
bisector of BC, the triangle is isosceles (AAS), and we have proven that AB is congruent to AC as 
promised,

We still have two cases to consider: The point O is inside the triangle ABC or the point O is 
outside the triangle ABC.

Case 1: Case 2:

O

O

M

D

D

E

E

Let M be the midpoint of BC.
From O, drop the perpendiculars to sides AB and AC, 
to points D and E, and draw segments BO and CO.

Now, triangles BMO and CMO are congruent, by SAS, 
so segments BO and CO are congruent.

Triangles DOA and EOA are congruent by AAS, so 
segments DO and EO are congruent, as are segments 
AD and AE.

Triangles DOB and EOC are both right triangles, and 
have congruent hypotenuses and a congruent leg.  By 
the Pythagorean theorem the other legs, BD and CE, 
are congruent as well, and so by SSS, DOB and EOC 
are congruent triangles.

Segment AB is equal to AD and DB.  Segment AC is 
equal to AE and EC.  Since segment AD is congruent 
to segment AE, and segment DB is congruent to 
segment EC, we have proved that segment AB is 
congruent to AC.

Let M be the midpoint of BC.
From O, drop the perpendiculars to lines AB and AC, 
to points D and E, and draw segments BO and CO.

Now, triangles BMO and CMO are congruent, by SAS, 
so segments BO and CO are congruent.

Triangles DOA and EOA are congruent by AAS, so 
segments DO and EO are congruent, as are segments 
AD and AE.  

Triangles DOB and EOC are both right triangles, and 
have congruent hypotenuses and a congruent leg.  By 
the Pythagorean theorem the other legs, BD and CE, 
are congruent as well, and so by SSS, DOB and EOC 
are congruent triangles.

Segment AD is equal to AB and BD.  Segment AE is 
equal to AC and CE.  Since segment AD is congruent 
to segment AE, and segment DB is congruent to 
segment EC, we have proved that segment AB is 
congruent to AC.

O


