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HEY! Draw and write all
over these notes!

Let’s start right off: How can you construct a perfect equilateral
triangle using your straightedge and compass?

1 Draw it yourself!

Given a pair of points:

What'’s the proof
this really works?

Something cool to draw while
making an equilateral triangle:

VO! Better keep your
i |
notes Orgaﬂlzed- This neat drawing comes up when you draw the circles all the way round.
It has the very old Latin name of vesica pisces, which means “fish bladder”
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Can you see how to use this to construct a perfect hexagon?

Draw these in your notebook!

Draw more!
Make something cool!

Can you keep on going?

What’s the coolest thing you can construct in your notebook?
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—uclid’s Tools

What can you do with a compass? .

Given a pair of points, you can draw a Given: o

circle centered at one, passing through
the other.

What can you do with a straightedge?

Given a pair of points, you can draw a Given:

- - .
line, passing through each. . = /

A subtle bonus observation:

A real compass, of the sort we use today, can do a little more than this. You can
measure with it too, setting the radius of your circle and centering it where
ever you please.

Given:

\ \

radius center

But Euclid’s compass is a little different: it’s floppy, like a piece of string! Once
you pick it up, it collapses. You can only draw a circle if you are given a
point that lies on it, just as illustrated in the box at the top of this page.

Does this make a difference? If we had to use a floppy compass would there be
things we couldn’t do with a rigid one?
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Right off, though, Euclid shows that’s just as good! (Book |, Proposi-
tion 2) Anything your compass can do, his compass can too, with
just a few extra steps. What’s really cool is he uses an equilateral
triangle to do it! Here’s his method:

® center

Given:

radius/

And voila!

A circle with the given
center and radius,
made with Euclid’s
floppy compass!

What'’s the proof
this really works?

Try it yourself!

| mean always works?

Theorem: Given any center and any radius, Euclid’s tools can make a circle with
that center and that radius.

A floppy compass is just as good as a rigid compass!
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Step-by-step instructions for constructing a square

Given: ] ]
— but why do we really obtain a polygon with four
e o equal sides and four right angles?
What do we need to use to be able to say this?
1 2
J )\
) 1 \ ?
3 4
6
5 ®

Practice drawing this!
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Mysterious Constructions!

Will this make a square?

PAGE 6

Will this make a square?

Can you prove it?

Will this make a square?

How about this?

(Olin O-S, 2014)



The Rules of the Game
(Most of them at any rate)

Euclid’s genius was to spell out the rules of the game. How can we prove, for sure,
that a claim must be true? We start with some basic definitions and postulates,
which we assume must hold. From these, we build up more and more true facts,
theorems, which themselves become building blocks for even more facts!

Definition: All the points on a circle are
the same distance from its center.

Postulate: Given any two points, you can
= draw a circle centered at the first point,

Given: passing through the other point. (You
can do this with your compass!)
. Given:
Postulate: You can draw a line through o
any two given points, and you can extend . = /
a line as much as you like. (You can do
this with your ruler.)
Definition: A right angle is defined in a
funny way: if a line hits another line, =
making two angles that are equal to each |_—|
other, these are, by definition, right
angles.

Postulate: You can assume all right angles
are equal to each other. \<

We won’t need Euclid’s Fifth Postulate
until Proposition 29, but let’s spell it out
now!

Postulate: If two lines meet a third, and / =

the interior angles sum to less than two &

right angles, the two lines must meet i /

somewhere. < _[:l_ (We didn’t have room to

show where they meet!)
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Let’s Prove Some Stuff!

Our goal is to build up theorems using the postulates and earlier theorems as building
blocks!

We’ve already shown how to construct an equilateral triangle and prove what we construct-
ed really is an equilateral triangle like we said it is!

Euclid’s Proposition 1.1 Given a segment, construct an
equilateral triangle upon it.

Prove this is really an equilateral triangle!

1.2 Given a center and a radius, construct a circle with that center and radius using a floppy
compass.

Prove your circle really has the right radius!
Given:

=
\ \

radius center

1.3 Given a longer line segment and a shorter one, cut the length of the shorter one off of
the longer one.

Prove this works!
Given:

/ shorter / snip!

longer

1.4 (SAS) Suppose two triangles have a pair of matching sides, and a matching
angle between them. Then the triangles are equal (all sides and angles match).

Do you believe this? What is the proof?
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Before we go on, we should ask ourselves what is likely to be true?

Q: Two triangles are equal if the sides each match and all the angles each match. We
could write this as saying ASASAS (angle, side, angle, side, angle, side) all match on the two
triangles.

/ But what if less information is given?

4 If all the sides match (SSS), do the angles have to match
too? See if you can draw two triangles that have all the
same lengths of side, but somehow the angles are different.

4

Try it!

If two sides and one of the angles match, must the other side and the other two angles
match too?

(Does it matter if the matching angle is between the two matching sides — SAS — or next
to one of them — SSA?)

What if all the angles match — do the sides need to match also (AAA)?
What if two angles match and one of the sides?

Does it matter if the matching side is between the two matching
angles — ASA — or next to one of them — AAS?

In other words, which of these are probably theorems?

SSS SAS SSA AAA ASA AAS

draw a bunch of triangles &
make some guesses

HEY!
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Here are the next few: Can you prove these? =

[.5 If a triangle has two sides equal, then the oppo-
site angles are equal.

1.6 Conversely if a triangle has two angles equal, =
then the opposite sides are equal. A A

Let’s prove Prop 1.5 that if two sides of a triangle are equal,
the opposite angles are equal as well. All we need is to =
use SAS, over and over!

Proof: Given a triangle with two sides equal, extend the sides an
equal amount and connect as shown

Q: Then why must these two triangles also be equal?
What angles and segments must be equal since these
triangles are? Mark this on the diagram!

Q: Then why must these two triangles also be equal?
What angles and segments must be equal since these
triangles are?

Finally, knowing what we know
about which angles are equal so far,
how do we finish the proof of the theorem?
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1.7 & 1.8 (SSS) If all three sides match between a pair /

of triangles, all the angles match as well. \ = \

We can line the two triangles up; if SSS isn’t true, we’d have
a picture like this one at right. So all we really have to do is \
to prove this picture is impossible.

(Edges of the same color are supposedly the same length.)

AN

Hint: Connect the top points. We have two “isosceles” triangles.

What do we know about their angles?

Which of these angles must be larger if the diagram is legitimate?

O

Conclusion: Ooops! The diagram couldn’t
be legitimate. This can’t happen. The triangles
must have been equal to begin with.
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Let’s assume that SSS is true.
(We will prove this soon, but let’s see what it can give us now.)
So we can use 1.4 (SAS), 1.5 (isosceles triangles have equal angles on the base) and SSS (1.8)

1.9 Bisect an angle.

Prove that this works:

110 Bisect a segment. Prove that this works:
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111 Construct a perpendicular to a given segment at a given point
— and prove your construction always works!

Theorem (not in Euclid):
Opposite angles on a rhombus are equal,
and the diagonals bisect each other and meet at right angles.

AN
7

Proof: Draw the diagonals. Why are these triangles isosceles?
As we proceed, mark what What does that tell us about their angles?
angles we know must be equal. Why does that tell us they are equal?

Finally, how can we conclude the top and bottom
angles in the rhombus must be equal?

Using the same argument, show

the left and right angles in the
rhombus must be equal. @

And why must the diagonals bisect each other?

Finally, why are these smaller triangles all
equal, and how does that tell us that the
diagonals must bisect each other and meet
at right angles?
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More Euclid!

113, 1.14: The sum of two supplementary angles equals two right angles (not a big
deal: construct a perpendicular using 1.11, then arithmetic). Conversely, if two adja-

cent angles sum to two right angles, they lie on a straight line.

& Q=m

[.15: Vertical angles are equal.
(The proof is arithmetic, using 1.13.)

.16 In a triangle, consider two angles opposite to a third; then either of the two
angles is less than the supplement of the third. (Let’s see a picture!) Even though
this theorem doesn’t say very much, its proof isn’t very long, and the theorem is an

important stepping stone.

L &< A<

This is a surprisingly powerful theorem and has a very clever proof!
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The Triangle Inequality, and how to
construct a triangle given its sides:

Euclid 1.20 is the famous Triangle Inequality:

If the sides of a triangle have lengths A, B, and C
A+B must be less than C,

B+C must be less than A,

C+A must be less than B.

In order to pull this off, Euclid uses 1.19, which uses 1.18, which uses 1.16.

119 If ‘> then

118 If
> then ‘>

And Euclid 1.22 tells us how to construct a triangle with three specified side lengths

(if they satisfy the triangle inequality). For practice, construct a triangle with these three

side lengths:
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We’'ve seen

1.26 ASA, AAS!
SAS (Proposition 1.4)

SSS (Propositions 1.7 & 1.8)

AAA is just false. SSA is also false, but a little surprising how.
That just leaves ASA and AAS: Proposition 1.26.

A curious note: Euclid groups ASA and AAS together and waits until Proposition 26
to get around to proving these are true. But if you look closely, his proof of ASA could
have been given any time after Proposition 4 — | wonder why he waited so long!
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And then we’re ready to begin talking about parallel lines! This is a big step, for it is
the first time we’ll be using the mysterious fifth postulate. All the theorems so far
hold in any geometry that satisfies just the first four postulates: on the sphere, the
plane, and the hyperbolic plane. But once we use the fifth postulate, our results hold
only in the plane.

Theorems 27, 28, 29:

the lines are parallel
S (never meet)

Theorem 31: How do you construct a line,
through a given point,
parallel to another given line?
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More Theorems that Require the Fifth Postulate

From these we’ll be able to prove some facts that only hold in the Euclidean plane, where
the fifth postulate holds. (They don’t hold in non-Euclidean geometry!)

1.32 The sum of interior angles of a triangle equals two right triangles.

Aé QA = L

If all sides of a quadrilateral are equal and one interior angle is a right angle, then all angles
are right angles and the quadrilateral is a square. (We needed this on the first day, when
we claimed we had really constructed a square!)

H L]
r/-_ é
. [ [ 1 []

[.33 Opposite sides of a parallelogram are equal, and the diagonal of a parallelogram
divides it into two equal parts.

opposite sides parallel

.47 The Pythagorean Theorem!!
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A Very Cool Proof

Once we prove that opposite sides of a parallelogram are equal, we can prove:

Parallelograms with equal bases, between the same parallel lines, have the same area.

[ )~

A hint of the proof. We begin with:

e

Why are these two large triangles equal?

What do we need to add and subtract from the triangles to get the area of each parallelogram?
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Euclid’s Proof of the Pythogorean Theorem (1.47)

We will show that the shaded regions have the
same area, using three theorems:

* A diagonal bisects a parallelogram into two
equal areas.

* Parallelograms with the same base and
between the same parallels have the same
area.

* SAS.

We’ll give the argument for just one of the areas:
the argument for the other is exactly the same.

Why is each step valid?

SAS
is used here

Why are the
two triangles
marked *
equal?

Here is another proof, known in China 2000 years ago; the Hindu mathematician
Bhaskara simply wrote:

BEHOLD! he was referring to:

Which of Euclid’s propositions are needed for this proof to be complete?

PAGE 20



Different Possible “Parallel Postulates”

Any of these could have been taken as the Parallel Postulate and we would have had
the same geometry.

Euclid’s Parallel Postulate:  Given with 47 < _|jD_

then the lines must meet.
(Or conversely, if the lines are parallel, the interior angles are at least two right angles)

Playfair’s parallel postulate: Given

There is a unigue line through the given point, parallel to the given line.

Tom’s Postulate: If two lines are parallel, then any two segments between them,
perpendicular to one of the lines, have the same length.

parallel

Any of these can be taken as an axiom and the others proven as theorems. For example:
Taking Euclid’s postulate, prove Playfair’'s and Tom’s.
Taking Playfair’s, prove Euclid’s and Tom’s.

Taking Tom’s, prove Euclid’s and Playfair’s.

In any of these, you may use all the theorems that rest on the first four postulates,
namely Propositions 1-28.
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A quick word about Non-Euclidean geometry.
There is more than one kind of geometry in which the first four postulates hold!

The most important examples are elliptic geometry, which is the geometry of
the sphere, and hyperbolic geometry.

Elliptic Geometry

On a sphere, we can define lines to be great circles )Q
— circles that cut the sphere in half. The first four — B
postulates work just as well, and all the theorems
that depend upon them. We still have SAS, SSS,
ASA, facts about isosceles triangles, and all the
constructions we’ve seen so far.

But there are no parallel lines — every pair of great circles intersect — and we
have some surprising theorems, such as: The sum of angles in a triangle is great-
er than two right angles.

Hyperbolic Geometry:

We’ll need to take some time to explain hyperbolic
geometry, but in essence it is the geometry of surfaces
with a lot more room than in the plane — the surface of
a wrinkly lettuce leaf is an example. In hyperbolic
geometry, there are a great many lines, parallel to a
given one, through a given point! And we have theo-
rems like this one: The sum of angles in a triangle is less than two right angles!

One thing that holds in both elliptic and hyperbolic geometry, but not in the
plane, is AAA — two triangles with the same angles have to be congruent!!

For example, on the sphere can you find a triangle that has three right angles?
Can tell why any two triangles like this are congruent?
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Euclid’s Construction
of a Regular Pentagon, B
Given a Circumscribing Circle.

Begin with a circle C with
center O. Draw any line OA
passing through O. Find
the midpoint M of segment
OA. Draw a perpendicular
radius OB.

Draw the circle with center
M, passing through B, and
let W and V be the inter-
sections of this circle with B
the line OA.

Once we have V and W,
construct the circles with
centers V and W passing
through O. The intersec-
tions of these circles with C
are four of the five vertices

of the desired pentagon.
The fifth vertex is our our Prove this works!
point A.

A 36-72-72° isosceles triangle has both
base angles twice the top. Subdivide
into two isosceles triangles as shown.
Taking 1 and x as shown, by similarity
we find that the sides x? =1+x.

Solve for x. Can you see how this
quantity is constructed in our construction?
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Here’s a proof of the Pythagorean Theorem, due to President
James A. Garfield (March 1881-Sept 1881):

The total area of the trapezoid is 2 (a+b) (a+b).
The area of the trianglesis 2 ab + 2 ab + 12 ¢2
Can you use this to show a2 + b2 =¢27?

A full proof requires knowing the area of a trapezoid, which
a is not hard to prove using Euclid Book 1, the area of a triangle

(which Euclid more or less works out in Book 1), and some algebra,
3 b which Euclid works out in Book 2.

Later in the Elements, Euclid works out how to deal with ratios (Book 5) and that
corresponding parts of similar triangles are in the same proportion (Book 6). He
can then give the following proof (Book 6, Proposition 31).

Draw a perpendicular Why are all three triangles similar?
from the hypotenuse

) (that is, why do they have the same
to the opposite vertex: three angles?)
a b
a
X Yy

It’s easier for us to follow if we use our familiar notation. Explain each step:
a/x=c/a

Therefore a2 /c =x

Thereforea2/c2 =x/c

Meanwhile:

b/x=c/b
Therefore b2/c =y
Thereforeb2/c2 =y /c

Now consider the sum x/c + y/c. On the one hand x/c + y/c = (x+y)/c =
On the other hand substituting in, we have x/c + y/c =

Finish the proof.

There are hundreds! See:
http:/www.cut-the-knot.org/pythagoras/index.shtml
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This is a stunning variation on the proof in Book 4, Proposition 3.
It relies on the following fact, proven in Euclid Book 4:

A Suppose figures A and X are on the equal bases, and figures
B and Y are also on equal bases;
further suppose A is similar to B and X is similar to .

Then (area of A) / (area of B) = (area of X) / (area of Y)

That is, the areas are in the same proportion.

What this means is that if | want to show that the areas
of the two squares add up to the area of the third, it
suffices to show this for any figures that have the same
bases.

SO: we might as well use a clever
shape for the proof!

areas A+B=C & areas A+B=C How does this
complete the proof?
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An Introduction to Book 2

In Euclid’s time, algebra had not yet been invented. Euclid and others did need
algebraic facts. Book 2 of Euclid’s Elements catalogues many clever geometric
work-arounds for facts more easily handled algebraically.

Today these remain very nice “proofs by picture.”

For example:

Theorem: (a+b)2 = a2 + 2ab + b2 Proof:

Theorem: (a+b+c)2 = a2 + b2+ c2+ 2ab + 2ac + 2ab
Proof:

Euclid gives a clever construction of the harmonic mean:
Given a and b, construct vab

with the same area:
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Euclid’s proof of The Law of Cosines (11.13)

a2=b?2+c2-2bccos A

Case 1

a2+ 2bccos A=

l |

(and apply the
= b2+ ¢c2 Pythogorean theorem)
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Case 2
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Some important facts from Book 3 of Euclid’s Elements: Can you supply

_ ) ) the proofs?
Construct the circle through three given points

(These require the Parallel Postulate!)

Thereom 3.20 is remarkably useful:
In any diagram like this one, angle ABC is half of angle AOC. What is the proof?
(This mainly uses Proposition 1.6, that base angles of an isosceles triangle are equal.)

B

Hint: Split into two parts using the diameter
BO. Look at each part separately.

Do you see a lot of isosceles triangles?

B
Q_
C
O

A

A

(How does this proof
This theorem has some remarkable corollaries: use the parallel postulate?)

Corollary (Any triangle with vertices on the circle, and
one side a diameter of the circle, must be a right triangle!
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Corollary (3.21) Incredibly, if angles on a circle subtend the same arc,

they must be equal.
Can you supply

the proofs?

Corollary (3.22) If all the vertices of a quadrilateral lie on a circle,
then opposite angles must sum to two right angles.

A% E¥unl

~ ‘pi@-rh

Hint: Use this diagram,
Theorem 3.20,

and the basic fact that

the sum of the internal angles
of a triangle equals two

right angles (1.32).
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Some facts about circles and triangles.

We have already seen how to construct the circle through three given points:
(Euclid 5.5) Construct the perpendicular bisectors to two of the legs of the triangle.
The point where they meet will be the center of the triangle.

But why does this work? Given points ABC, construct the
perpendicular bisectors to AB and AC, and let them meet
at point O. (Why must they meet at all?)

Then we must show that OA, OB, and OC are all of
equal length. But that’s just a few applications of

the Hypotenuse-Leg Theorem (which follows from the
Pythagorean Theorem).

Thus, the circle centered at O, passing through one of the
vertices of the triangle also passes through all three.

Note that this implies, and is implied by:

Every circle through any two given points lies on the perpendicular
bisector of the segment joining them.

Try this:
Draw a bunch of circles
on the perpendicular bisector
of this segment, passing through
both ends.
| think this is a pretty cool picture!
A

The construction also implies an interest- B

ing thing: the perpendicular bisectors

must all meet at a point (the center of

this circle). Initially, it’s not clear that the Nope

perpendicular bisectors couldn’t look

something like this instead: c
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Euclid 3.16 tells us that any line tangent to a
circle at a given point must be perpendicular
to the radius of the circle at that point.

We’ll use this for our next construction.

Let’s construct the circle inscribed in a given triangle (4.4). This is really very pretty:

Construct the angle bisectors of angles ABC and ACB.

Let O be the point where these meet.

From O, construct the perpendiculars to

each of the segments, meeting at points D, E, and F.
B

The claim is that segments OD, OE, and OF are all equal.

Why is this true?

So the circle centered at O, passing through one of the points D, E, or F,
passes through all three of them.

Why must this circle be tangent to the sides of the triangle?

Try the construction yourself.
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And we get another interesting observation:
This implies that all the bisectors of the interior
angles must meet at a single point. We can’t
have a picture like this one. (Why not?)

This also implies, and is implied by, the following observation:
If a circle is tangent to two lines that meet,
its center must lie on the angle bisector.

Once we have found the center of this circle, a perpendicular from the
center to a side will meet that side in a point that lies on the circle,
allowing us to complete the construction.

Try it!
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Another theorem, which is quite nice:

In a triangle, we’ve seen that the perpendicular bisectors of the sides must meet at a point.
We’ve seen that the bisectors of the angles must meet at a point.

An altitude of a triangle is a segment perpendicular to a side, through the opposite vertex.

Construct the altitudes in this triangle.

Amazingly, all the altitudes must also meet at a single point.

Can you give the proof?

In other words, prove that if

AD and BE are altitudes meeting at a point O,
then the line CO meets AB at a right angle
(that is, is the other altitude).

Hint: This is a classic “Maze” proof. To start, can you find pairs of right trian-
gles that share an angle? Chasing this around, you can pair up all six angles at
the vertices of the triangle. Finally, how do you show the angle marked X is a
right angle?
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A “proof” that every triangle is equilateral.

It is remarkably difficult to spot the error! If you make a careful drawing by hand or in
Geometer’s Sketchpad, you will be able to discover where the flaw is.
Hint: all the triangles that we claim are congruent really are — that’s not the problem.

A

Given any triangle ABC, we shall prove that AB is congruent to AC.
A, Because we may label the vertices however we please

and the proof will still “work,” this implies that all three sides are

congruent and the triangle is equilateral!

Begin by constructing the angle bisector of angle BAC and the

) C

perpendicular bisector of segment BC. Suppose for contradiction

that triangle ABC is not isosceles. Then these lines are not parallel
and meet at some point O.

B

Obviously an equilateral triangle?

Clearly O cannot be on segments AB or AC (since O lies on the bisector of the angle between
them). And if O lies on segment BC, then the angle bisector coincides with the perpendicular
bisector of BC, the triangle is isosceles (AAS), and we have proven that AB is congruent to AC as

promised,

We still have two cases to consider: The point O is inside the triangle ABC or the point O is
outside the triangle ABC.

A

Case 1:

B

Let M be the midpoint of BC.
From O, drop the perpendiculars to sides AB and AC,
to points D and E, and draw segments BO and CO.

Now, triangles BMO and CMO are congruent, by SAS,
so segments BO and CO are congruent.

Triangles DOA and EOA are congruent by AAS, so
segments DO and EO are congruent, as are segments
AD and AE.

Triangles DOB and EOC are both right triangles, and
have congruent hypotenuses and a congruent leg. By
the Pythagorean theorem the other legs, BD and CE,
are congruent as well, and so by SSS, DOB and EOC
are congruent triangles.

Segment AB is equal to AD and DB. Segment AC is
equal to AE and EC. Since segment AD is congruent
to segment AE, and segment DB is congruent to
segment EC, we have proved that segment AB is
congruent to AC.

Case 2: A

' O
Let M be the midpoint of BC.

From O, drop the perpendiculars to lines AB and AC,
to points D and E, and draw segments BO and CO.

Now, triangles BMO and CMO are congruent, by SAS,
so segments BO and CO are congruent.

Triangles DOA and EOA are congruent by AAS, so
segments DO and EO are congruent, as are segments
AD and AE.

Triangles DOB and EOC are both right triangles, and
have congruent hypotenuses and a congruent leg. By
the Pythagorean theorem the other legs, BD and CE,
are congruent as well, and so by SSS, DOB and EOC
are congruent triangles.

Segment AD is equal to AB and BD. Segment AE is
equal to AC and CE. Since segment AD is congruent
to segment AE, and segment DB is congruent to
segment EC, we have proved that segment AB is
congruent to AC.



